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1 Introduction

Climate change is widely recognized as a serious risk that requires worldwide governmental action. 
In a recent speech to Lloyd’s of London, Bank of England Governor, Mark Carney, drew attention to 
the risks of failing to act on climate change including the risk to the world’s financial systems. To 
quote from Carney’s speech,

“The combination of the weight of scientific evidence and the dynamics of the

financial system suggest that, in the fullness of time, climate change will threaten

financial resilience and longer-term prosperity. While there is still time to act,

the window of opportunity is finite and shrinking.” 1

Unfortunately, there is no consensus amongst policymakers and researchers on the most

appropriate policy responses, including how quickly carbon emissions should be reduced.

Reaching consensus is made more difficult by the enormous uncertainty inherent in projec-

tions regarding the timing and extent of the future warming of the earth’s climate, the level

of damages, and humanity’s ability to adapt to a warmer climate.
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Adding to this is the fact that the most serious damages are expected to occur many

decades into the future. Using typical discount rates, traditional economic analysis would

recommend little action be taken at present. Further, world climate is affected by the cu-

mulative stock of atmospheric carbon, so that any actions taken today to reduce carbon

emissions will only have an impact after a considerable time lag. Policies to reduce carbon

emissions, whether via a carbon tax, cap and trade, or other regulatory schemes, are costly

as they entail a realignment of the economy away from carbon based fuels. Amongst govern-

ments and other decision makers, there is a natural tension between the desire to delay the

implementation of these costly policies and the concern that a more precautionary approach

is warranted in the face of these huge uncertainties and time lags.

1.1 Current Approaches

A significant portion of current research and policy discussions concerning climate change

are based on analysis from Integrated Assessment Models (IAMs), which integrate climate

science and economic models to assess the impact of a warming climate.2 Of necessity, these 
models include a large number of parameters and functional relationships about which we

have little information. As is pointed out by Pindyck (2013), different economic analyses

of climate change can come to starkly different conclusions, depending on key assumptions

about such factors as the levels of future greenhouse gas emissions under business-as-usual

versus alternate scenarios, projections of average global temperatures and economic impacts,

estimates of the costs of abating greenhouse gas emissions, and the rate of discount. This

is exemplified by two very influential studies based on IAM’s as described in Stern (2008)

and Nordhaus (2008). The former argued that immediate action to reduce global carbon

emissions would produce significant positive economic returns, while the latter recommended

only limited reduction in carbon emissions. The Stern study was criticized for using a very

low discount rate, which Stern justified on the ethical grounds that society should give equal

weight to the well being of current and future generations.

A key component in any economic analysis of climate change is valuing the loss in societal

welfare that results from reduced economic output with a warming climate. Societal welfare

is typically assumed to depend on consumption levels via a Constant Relative Risk Aversion
2See Nordhaus (2008), Hope (2006) and Tol (2001a) and Tol (2001b) for a description of three influential 

IAMS.

2



(CRRA) social utility function which can be specified as follows:

U(Ct) =
C1−η
t

(1− η)
,

where U denotes utility which depends on consumption in period t, Ct, and η is the index of

relative risk aversion. The impact of climate change on societal welfare is measured by the

discounted sum of annual utilities over a long time period (such as 500 years) in different

climate scenarios. The discount rate and the coefficient of relative risk aversion are critical

to the results, and there is no general agreement on the correct values.

More recently, research has focused on the treatment of uncertainty in scientific estimates

of the response of world climate to the increasing atmospheric concentration of greenhouse

gases. Most IAMs are deterministic, with uncertainty analyzed by running Monte Carlo

simulations on key model parameters (Pindyck 2013). A criticism of much current work is
the failure to deal adequately with possible catastrophic outcomes whereby average global

temperatures increase by 4 to 5 degrees Celsius by the turn of the next century. The

probability of such an event is non-zero, and its impact is unknown. The damage functions

used in IAM’s are calibrated for small temperature changes and are uninformative about the

impact of such an extreme event. Weitzman (2014) has pointed out that if the probability

distribution of the negative consequences of climate change has a sufficiently fat tail, and if
we adopt a sufficiently high degree of relative risk aversion, the optimal policy for society

would be highly precautionary.

Some of the earlier papers to incorporate uncertainty into optimal decisions for climate

change were Pizer (1999) and Kelly & Kolstad (1999, 2001). More recent work adapts the

Nordhaus IAMs (DICE-2007) introducing uncertainty into models whereby the objective is
to maximize the sum of discounted utility. Traeger (2014) and Lemoine & Traeger (2014)

are examples which use a stochastic dynamic programming solution approach. The current

project draws on this recent work.

1.2 An Alternative: A Targeted Wealth Approach

Society’s choices about spending today’s national income will determine the level of capital

stock and income generating capacity available for future generations. In any given year,

a portion of national income is spent on consumption goods and a portion is invested to

augment the capital stock. However the world’s ability to generate income is harmed by

increasing global temperatures. National governments can choose to ameliorate the situation
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by devoting a portion of national income to reducing worldwide carbon emissions, but at the

cost of reducing the shares available for current consumption and investment in the capital

stock. Governments face the dilemma of balancing the desire for current consumption with

the desire to maintain the economy’s income generating capacity through investment in

capital stock and reducing the anthropomorphic causes of climate change.

We adopt an alternative approach to this dilemma, utilizing concepts from the pension

industry for dealing with risky decisions under extreme uncertainty. Rather than choosing

policies to maximize a sum of discounted social utility, we argue that from the point of view

of intergenerational fairness, we should choose climate change policies which enable future

generations to enjoy a reasonable standard of living in the distant future by maintaining a

minimum level of capital stock per capita. We call our approach the targeted wealth approach

as it involves setting a target level for global wealth as measured by the world’s capital stock,

and choosing policies to minimize the risk of falling short of the target.

While this idea is not in conflict with the social utility function approach, we deal directly

with the desired end state, rather than indirectly through the use of a utility function and

a discount rate. Using this new approach, the trade off between the risk and reward of

devoting economic resources towards slowing climate change is very clear and intuitive. In

addition we avoid the need to make an arbitrary choice for the discount rate. We consider

this approach to be a complement to the current approaches used in IAMs models.

In the following sections we develop a model of the interaction of climate and the economy

based on standard assumptions in the DICE model as described in Nordhaus (2008) and in

many papers which address the economics of climate change such as Leach (2007), Traeger

(2014), Lemoine & Traeger (2014). Uncertainty in climate change is captured by modelling

temperature as a mean reverting stochastic process. We formulate a stochastic optimal

control problem whereby the social planner chooses a path for the abatement of carbon

emissions to minimize the risk of failing to achieve a targeted capital stock per capita T

years in the future. It is demonstrated in the literature that the optimal abatement strategy

to achieve this target is also dynamically mean-variance optimal (Li & Ng 2000, Zhou & Li

2000, Dang & Forsyth 2016), meaning that no other strategy has a smaller variance. This

relates to a familiar concept in finance: the mean variance efficient frontier. Higher future

expected capital stock per capita comes at the cost of greater risk. More certainty about

future outcomes is only possible at the expense of lower capital stock. The choice of where

to be on this frontier is a policy decision. However, given any specified future mean capital

stock per capita, we can determine the emission strategy which results in this mean value,
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with the smallest risk.

1.3 Modelling assumptions

The mathematical details of the model are provided in the next section, including further

discussion of the mean-variance efficient frontier, but as an overview we summarize some

basic modelling assumptions.

• Global climate is affected by the mean temperature, which is determined, in the long-

run, by the cumulative stock of global atmospheric carbon.

• The global stock of carbon, if no anthropocentric carbon is emitted, decays slowly to

a natural background mean level.

• Uncertainties in the response of the climate to the increasing atmospheric stock of

carbon are captured by modelling global average temperature as a mean reverting

stochastic process, which mean-reverts to a level determined by the global stock of

atmospheric carbon.

• World income (GDP) depends positively on the stocks of labour and capital, but

is reduced by damages due to rising temperatures and also by spending on carbon

abatement.

• The labour supply grows deterministically to a given upper limit. We assume the

labour supply is a constant proportion of world population.

• National income is either consumed, invested, or devoted to carbon abatement poli-

cies. The amount devoted to carbon abatement is determined as the optimal control.

Consumption per capita is assumed to grow at an exogenously specified rate, intended

to reflect expectations for acceptable growth in living standards. The remainder of

national income is invested in the capital stock.

2      Detailed specification of the decision model

2.1 Modelling the interaction of climate and the economy

The climate-economy model presented here is based on Traeger (2014) who introduced a

stochastic dynamic programming version of the DICE-2007 model and Lemoine & Traeger
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(2014) who used a similar model to investigate tipping points in the strength of the carbon-

temperature feedback and the earth’s ability to remove carbon from the atmosphere. A key

difference in our analysis is that temperature is modelled as an Ito process.

2.1.1 Temperature and carbon stock

Average global surface temperature, X, is described by a stochastic differential equation as

follows:

dX = φ1

[
X̄(t)−X(t)

]
dt+ σX(t)dz, (1)

where X(t) refers to the increase in average surface temperature since pre-industrial times,

φ1 and σ are constant parameters. dz is the increment of a standard Weiner process and

is intended to capture volatility in the earth’s temperature. Global average temperature is

assumed to be mean reverting to a long run value X̄, which is specified as

X̄ = φ2

(
log(S(t)/S̄)

log(2)

)
+ φ3. (2)

S(t) is the stock of atmospheric carbon. S̄ is the pre-industrial atmospheric carbon stock.

φ2, the climate sensitivity parameter, can be interpreted as the impact on global average

temperature of a doubling of carbon stock. φ3 gives the impact on temperature of green-

house gases other than carbon. The mean reverting structure of Equation (1) is common in

Integrated Assessment Models such as RICE (Nordhaus & Boyer 2000). Variations emerge

in the specification of φ1, φ2, and φ3. In Lemoine & Traeger (2014) these parameters are

deterministic functions of temperature and time.

Carbon emissions from burning fossil fuels enter the global carbon cycle whereby carbon

is exchanged between various carbon reservoirs including the atmosphere, oceans and ter-

restrial ecosystems. An important modelling assumption is how carbon emissions affect the

atmospheric stock of carbon, which is the key driver in climate change. The evolution of the

stock of atmospheric carbon, S(t) over time is assumed to be given by:

dS(t) = [ε(t)δε,t − (S(t)− S̄)δS,t]dt. (3)

Here ε(t) refers to current emissions. δε,t refers to the portion of emissions that becomes part

of atmospheric carbon stock. S̄ is the pre-industrial accumulation of carbon. δS,t is the rate

at which carbon is removed from the atmospheric stock by natural processes. The literature

varies in its specification of δS,t. It is sometimes specified as a deterministic function of time,
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or alternately as a function of time and the stock of carbon. In this analysis we adopt the

specification of Golosov et al. (2014).

2.1.2 Economic output and carbon emissions

Gross economic output (Y gross) is specified by a Cobb-Douglas production function:

Y gross(t) = (A(t)L(t))(1−ξ)K(t)ξ (4)

where A(t) is a parameter capturing technological change, L(t) denotes units of labour, K(t)

denotes units of capital, and ξ is a constant parameter. A(t) and L(t) are both deterministic

functions of time, as is detailed in Section 3.3. In each period, gross output is reduced

by damages from climate change and by the cost of resources devoted to reducing carbon

emissions.

The damages caused by rising global temperature are captured by a damage function

which specifies the fractional reduction in annual output associated with higher levels of X.

D(t) = κ1X(t)κ2 . (5)

where κ1 and κ2 are constant parameters. This form of damage function is common in the

literature ( Nordhaus (2008), Leach (2007), Crost & Traeger (2013), Golosov et al. (2014),

Lemoine & Traeger (2014)).

Remark 1 (Criticism of equation (5)). Some researchers have argued that equation (5) is

only valid for small changes in global temperature, and does not model the disastorous effects

of large temperature effects. Since we consider the temperature change to have deterministic

and random components, it will be necessary to modify equation (5) for large (i.e. > 5◦) tem-

perature changes. We expect that a suitable modification will permit modelling the insurance

effect of early emission reductions.

Abatement cost as a fraction of gross GDP is given by:

Λ(µ(t)) = ψ(t)µ(t)a2 . (6)

µ(t) is the fractional reduction in emissions compared to the business-as-usual case, and is a

state variable, as discussed in Section 3.5. a2 is a constant parameter, and ψ(t) is assumed

to fall deterministically over time as is detailed in Section 3.3.
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Net GDP can then be defined as

Y (t) =
1− Λ(µ(t))

1 +D(X)
Y gross(t) (7)

=
1− Λ(µ(t))

1 +D(X)
(A(t)L(t))(1−ξ)K(t)ξ

Production results in carbon emissions. Total emissions at time t is the sum of emissions

from production, Y (t), as well as emissions from other sources such as land use changes,

B(t).

(8)ε(t) = η(t)(1 − µ(t))Y (t) + B(t)

with η(t) and Bt deterministic functions of time as given in Section 3.3.

2.2 Consumption and the evolution of the capital stock

Consumption per capita is assumed to grow at rate δc, which is intended to reflect a minimum

desired rate of increase in the standard of living. Consumption is also constrained to be no

larger than output in any year, so that the capital stock cannot be consumed. Denote

aggregate consumption as C(t) and consumption per capita as c(t) ≡ C(t)/L(t), then

C(t) = min

[
L(t)c0e

δc , Y (t)

]
(9)

c0 ≡ C0/L0 is consumption per capita at t = 0.

The capital stock evolves according to:

dK =

(
Y (t)− C(t)− δKK

)
dt (10)

where δK reflects the depreciation of the capital stock.

Since our objective function will be specified in terms of capital per person, we define the

variable Ω(t) ≡ K(t)/L(t).

2.3 Evolution of deterministic variables

Following Lemoine & Traeger (2014) there are several variables which are assumed to evolve

as deterministic functions of time.
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• Labour supply, L(t), in Equation (4):

dL = δL(L∞ − L(t))dt (11)

where L∞ is a long term equilibrium value for the labour supply.

• Technology, A(t) in Equation (4):

dA = gA,tA(t)dt (12)

where the growth rate in technology follows:

dgAt = δAgA,tdt (13)

• Emissions intensity of production, in Equation (8):

dη(t) = η(t)gn,tdt (14)

where

dgn,t = −δηgη,tdt (15)

• Nonindustrial carbon emissions, in Equation (8):

B(t) = B0e
tgB (16)

• Abatement cost in Equation (7):

ψ(t) =
a0η(t)

a2

(1− (1− etgφ)

a1

) (17)

2.4 Objective function

Our objective is specified in terms of capital stock per person, Ω(t) ≡ K(t)/L(t), and we

denote the desired level of expected future capital stock per capita as Ωdes. We aim to

achieve Ωdes by specifying the fractional reduction in annual carbon emissions compared

to a “business as usual” (BAU) case. This fractional reduction, denoted µ̂(t) is the control
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variable in the decision model. Mathematically our objective is to determine µ̂(t) to minimize

the risk that we fall below a particular target, denoted Ω∗, at time T in the future. In addition

our objective function must be specified so that there is no penalty for exceeding the target.

This is done by defining the objective function in terms of Ω̄, referred to as “effective capital”

where Ω̄ = min(ΩT ,Ω
∗). The objective function is then given as:

min
µ̂(t)

E

[ (
Ω̄− Ω∗

)2 ]
;

subject to Ω̄ = min(ΩT ,Ω
∗) and E[Ω̄] = Ωdes

E[·] = Expectation

µ̂(t) = Choice of fractional reduction in emissions compared to BAU case

Ω∗ = Target capital stock per capita at time T

ΩT = Observed capital stock per capita at time T . (18)

Note that according to Equation (18), a large shortfall is penalized more than a small short-

fall. It turns out that in order to achieve E[Ω̄T ] = Ωdes, we must aim for a target, Ω∗, which 
is slightly higher than Ωdes.

3 In Equation (18) the expected value of Ω̄ at time T will be 
less than Ω∗, ie, E[Ω̄T ] < Ω∗. We therefore choose Ω∗ so that E[Ω̄T ] = Ωdes. This idea is 
intuitive: as noted above in order to achieve Ωdes on average, our target capital stock must 
exceed our desired capital stock.

2.5 State and control variables

Carbon abatement is achieved through policies such as a carbon tax or regulation, which in 
reality can only be adjusted at discrete time points. In our model, the optimal control is 
chosen at discrete decision times denoted by:

T = {t0 = 0 < t1 < ..., ti, ... < tI = T} (19)

The state of the system is determined by four variables: the stock of carbon, S(t), the

temperature, X(t), the capital stock per person, Ω(t), and abatement µ(t). All other vari-

ables are deterministic functions of the state variables. We define Pt = (S(t), X(t),Ω(t), µ(t))

as the process specifying the state of the system and p = (s, x, ω, µ) as the realization of the

state of the system at time t for t ∈ T .

3“We aim above the mark to hit the mark.” Ralph Waldo Emerson
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Let t− and t+ respectively denote the instants in time just before and just after time, t.

We use µ̂(·) to denote the control as a function of the current state at t− for t ∈ T , i.e.

µ̂(·) : (P t−, t−)→ µ̂ = µ̂(P t−, t−), t ∈ T (20)

The control µ̂(·) represents the abatement choice in each period. Note that abatement is

both a state variable (µ(t)), representing the current abatement level, and a control variable

representing the optimal choice in the next instant, µ̂(·), given the current value of state

variables. To allow for constraints on the control, we specify a set of admissible controls, Z
and µ̂ ∈ Z.

The state prevailing at time t−, t ∈ T , is given as:

p = (s, x, ω, µ) = (S(t−), X(t−),Ω(t−), µ(t−)). (21)

At time t+ immediately after the imposition of the control, the state will be given by

(S+, X+,Ω+, µ+) ≡

(S+(s, x, ω, µ; µ̂(·)), X+(s, x, ω, µ; µ̂(·)),Ω+(s, x, ω, µ; µ̂(·)), µ+(s, x, ω, µ; µ̂(·))).

(22)

The instant after the control is applied, a new abatement level, µ̂, may be chosen; while S,

X, and Ω are unchanged:

S+ = s, X+ = x, Ω+ = ω, µ+ = µ̂ (23)

2.6  Mean-Variance Efficient Frontiers

This section details how the mean-variance frontier is determined, and is based on Forsyth &
Vetzal (forthcoming). The achievable M-V objective set is defined solely in terms of

Ω̄ = min(ΩT ,Ω
∗), as specified in Equation (18) . We denote by Ep,t

µ̂ (·)[Ω̄] and V arp,tµ̂(·)[Ω̄],

respectively, the expectation and the variance of effective capital, conditional on the state

(p, t) and the control µ̂(·), t ∈ T . Let (p0, 0) ≡ (P (t = 0), t = 0) denote the initial state.

The achievable M-V objective is:

Y = {(V arp0,0µ̂(·) [Ω̄], Ep0,0
µ̂(·) [(Ω̄]) : µ̂ ∈ Z}. (24)
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For each point (V , E) ∈ Y and for an arbitrary scalar ρ > 0, the set of points YP (ρ) is defined

to be:

YP (ρ) = {(V∗, E∗) ∈ Y : ρV∗ − E∗ = min
(V,E)∈Y

(ρV − E)}. (25)

ρ is a parameter which governs the decision maker’s preferences regarding the trade off

between expected Y and its variance. For a given ρ, YP (ρ) is an efficient point in that it

offers the highest expected Ω̄ for a given variance. The efficient frontier, YP , maps out all

the efficient points for all values of ρ.

The variance term in Equation (25) implies that we cannot determine the associated

value function using dynamic programming.4 Using the embedding result of Li & Ng (2000)

and Zhou & Li (2000), we define the value function V (p, t):

V (p, t) = min
µ̂∈Z
{Ep,t

µ̂

[(
Ω̄− Ω∗

)2]
} (26)

where the parameter Ω∗ ∈ (−∞,+∞). As discussed in Forsyth & Vetzal (forthcoming),

the embedding result implies that there exists a Ω∗ ≡ Ω∗(p, t, ρ) such that for a given

positive ρ, a control µ̂ which minimizes Equation (25) also minimizes Equation (26). Unlike

Equation (25), dynamic programming can be implemented to determine the optimal control.

The value function V (p, t) can be found by solving the associated Hamilton-Jacobi-Bellman

(HJB) equation backward in time with the terminal condition:

V (p, T ) = [min(ω,Ω∗)− Ω∗]2 (27)

Equation (26) is solved for a given value of Ω∗. Once the optimal control is known it is

straightforward to determine the expected value of wealth (capital stock per person) under

the optimal controlEp,t
µ̂ [Ω̄T ], and hence a point on the efficient frontier,

(
V arp0,t=0

µ̂ [Ω̄T ], Ep0,t=0
µ̂ [Ω̄T ]

)
.

This is repeated for numerous values of Ω∗ to trace on a curve in the (V , E) plane.

The expected value of the effective capital stock per person, E[Ω̄T ] can be found by

solving an additional HJB equation for U(p, t) = E[Ω̄T ] with the terminal condition U(p, t) =

min(ω,Ω∗).

4This is discussed in Basak & Chabakauri (2010), Li & Ng (2000) and Zhou & Li (2000).
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2.7 The HJB Equation and Optimal Control

Using dynamic programming, the problem is solved backwards in time. For times t ∈/ T ,
V is found from the solution of an HJB equation, which follows by applying Ito’s lemma

to Equation (26) and taking expectations. Note that there is no term associated with the

discount rate, since the objective function is posed in terms of the real terminal capital stock

per capita. Define the diffusion operator as:

LV ≡ (σx)2

2

∂2V

∂x2
+ φ1(X̄ − x)

∂V

∂x
+
(
(S̄ − s)δS,t + εδε,t

)∂V
∂s

+ αω
∂V

∂ω
.

αω = [Y − C − δL(L∞ − L)] . (28)

We remind the reader that Y (·) is defined in equation (7) and C(t) is defined in equation

(9). To reduce notational complexity we have suppressed the dependence of state variables

on time as well as the dependence of V on the state variable in vector p. Then the final HJB

equation is
∂V

∂t
+ LV = 0 , t /∈ T . (29)

At discrete decision dates, t = ti ∈ T , define the intervention operator as:

M(µ)V (p, t) = V (S+, X+,Ω+, µ+, t). (30)

The intervention operator applies the optimal control by choosing the level of abatement,

µ+ = µ̂ as specified in Equation (23).

At each time t = ti ∈ T , the optimal control is chosen to minimize the objective function

by applying the intervention operator,

V (p, t−i ) = min
µ̂∈Z
M(µ)V (p, t+i ). (31)

At the terminal time t = T we have

V (p, T ) = [min(ω,Ω∗)− Ω∗]2. (32)

In order to determine the mean and variance of Ω̄T , we need to solve an additional equation,

for E[Ω̄T ] Given a set of optimal controls, µ̂∗ = µ̂(p, t), t ∈ T , we use these controls to solve

for:

U(p, t) = Ep,t

Ω̄∗ [Ω̄T ], (33)
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by solving the PDE

Ut + LU = 0, t /∈ T , (34)

and the optimal conditions at t ∈ T

M(µ̂∗)U(p, t) = U(S+, S+,Ω+, µ+), (35)

with the terminal condition

U(p, T ) = min(ω,Ω∗) . (36)

Defining

p0 = (S0, X0,Ω0, µ0) (37)

then, the mean and variance as seen at t = 0 are given by:

V (p0, 0) = Ep0,t
µ̂(·) [(Ω̄− Ω∗)2] (38)

U(p0, 0) = Ep0,t
µ̂(·) [Ω̄]

Ep0,t
µ̂(·) [Ω̄

2] = V (p0, 0) + 2Ω∗ U(p0, 0)− (Ω∗)2.

Therefore,

V arp0,tµ̂(·)[Ω̄] = Ep0,t
µ̂(·) [(Ω̄)2]− (U(p0, 0))2 . (39)

2.8 Numerical solution of the HJB equation

The HJB equation (29) is a highly nonlinear PDE, and closed form solutions are elusive. In 
order to avoid making unrealistic simplifications, we have developed a numerical algorithm 
for solving equation (29). This equation is a four dimensional problem, and can be expected 
to be CPU intensive. The method we will use is based on an implicit finite difference 
technique, combined with semi-Lagrangian timestepping (Chen & Forsyth 2007).

3 Data Gathering

The data for the parameters in this model will be largely from the DICE-2007 model de-

scribed in Nordhaus (2008). Nordhaus based his analysis on the most recently available
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reports from the Intergovernmental Panel on Climate Change. We will update Nordhaus’s

assumptions using more recent reports.
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