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ABSTRACT 

The “practitioner Black-Scholes delta” for 
hedging options is a delta calculated from the 
Black-Scholes-Merton model (or one of its 
extensions) with the volatility parameter set 
equal to the implied volatility. As has been 
pointed out by a number of researchers, this 
delta does not minimize the variance of changes 
in the value of a trader’s position. This is 
because there is a non-zero correlation 
between movements in the price of the 
underlying asset and implied volatility 
movements. The minimum variance delta takes 
account of both price changes and the expected 
change in implied volatility conditional on a 
price change. This paper determines empirically 
a model for the minimum variance delta. We 
test the model using data on options on the 
S&P 500 and show that it is an improvement 
over stochastic volatility models, even when the 
latter are calibrated afresh each day for each 
option maturity. We present results for options 
on the S&P 100, the Dow Jones, individual 
stocks, and commodity and interest-rate ETFs. 

Key words:  Options, delta, vega, stochastic 
volatility, minimum variance 

  

OPTIMAL DELTA HEDGING FOR 
OPTIONS 

 

1. INTRODUCTION 

The textbook approach to managing the risk in 
a portfolio of options involves specifying a 
valuation model and then calculating partial 
derivatives of the option prices with respect to 
the underlying stochastic variables. The most 
popular valuation models are those based on 
the assumptions made by Black and Scholes 
(1973) and Merton (1973). When hedge 
parameters are calculated from these models, 

the usual market practice is to set each option’s 
volatility parameter equal to its implied 
volatility. This is sometimes referred to as using 
the “practitioner Black-Scholes model.” The 
“practitioner Black-Scholes delta” for example is 
the partial derivative of the option price with 
respect to the underlying asset price with other 
variables, including the implied volatility, kept 
constant.  

Delta is by far the most important hedge 
parameter and fortunately it is the one that can 
be most easily adjusted by trading the 
underlying asset. Ever since the birth of 
exchange-traded options markets in 1973, delta 
hedging has played a major role in the 
management of portfolios of options. Option 
traders adjust delta frequently, making it close 
to zero, by trading the underlying asset.  

Even though the Black-Scholes-Merton model 
assumes volatility is constant, market 
participants usually calculate a “practitioner 
Black-Scholes vega” to measure their volatility 
exposure and for hedging this exposure. This 
vega is the partial derivative of the option price 
with respect to implied volatility with all other 
variables, including the asset price, kept 
constant.1 This approach, although not based 
on an internally consistent model, has the 
advantage of simplicity and can lead to effective 
hedging. This is because the price of an option 
at any given time is, to a good approximation, a 
deterministic function of the underlying asset 
price and the implied volatility.2 A Taylor series 
expansion shows that changes in the price are 
hedged if the impact of changes in these two 
variables are hedged. However, vega is less easy 
to adjust than delta because this requires trades 

                                                 
1
 In a portfolio of options dependent on a particular 

asset, the options typically have different implied 
volatilities. The usual practice when vega is 
calculated is to calculate the portfolio vega as the 
sum of vegas of the individual options. This is 
equivalent to considering the impact of a parallel 
shift in the volatility surface.  
2
 This is exactly true if we ignore uncertainties 

relating to interest rates and dividends. 
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in more complex products such as options or 
volatility swaps.  

As is well known, there is a negative 
relationship between an equity price and its 
volatility. Christie (1982) showed this is true 
when volatility estimates are based on equity 
return data. Other authors have shown that it is 
true when implied volatility estimates are used.  
One model explaining the negative relationship 
in terms of leverage was proposed by Geske 
(1979). In this model, the value of the assets of 
a company has constant volatility. As the equity 
price moves up (down), leverage decreases 
(increases) and as a result volatility decreases 
(increases). An alternative hypothesis, known as 
the volatility feedback effect, is considered by, 
for example, French et al (1987), Campbell and 
Hentschel (1992) and Bollerslev et al (2006). In 
this, the causality is the other way round. When 
there is an increase (decrease) in volatility, the 
required rate of return increases (decreases) 
causing the stock price to decline (increase).  

A number of researchers have recognized that 
the negative relationship between an equity 
price and its volatility means that the Black-
Scholes delta does not give the position in the 
underlying equity that minimizes the variance 
of the hedger’s position. The minimum variance 
(MV) delta hedge takes account of the impact of 
both a change in the underlying equity price 
and the expected change in volatility 
conditional on the change in the underlying 
equity price.  Given that delta hedging is 
relatively straightforward, it is important that 
traders get as much mileage as possible from it. 
Switching from the practitioner Black-Scholes 
delta to the minimum variance delta is 
therefore a desirable objective. Indeed it has 
two advantages. First, it lowers the variance of 
daily changes in the value of the hedged 
position. Second, it lowers the residual vega 
exposure because part of vega exposure is 
handled by the position that is taken in the 
underlying asset. 

A number of stochastic volatility models have 
been suggested in the literature. These include 

Hull and White (1987, 1988), Heston (1993), 
and Hagan et al (2002). A natural assumption 
might be that using a stochastic volatility model 
automatically improves delta. In fact, this is not 
the case if delta is calculated in the usual way, 
as the partial derivative of the option price with 
respect to the asset price.  To calculate the MV 
delta, it is necessary to use the model to 
determine the expected change in the option 
price arising from both the change in the 
underlying asset and the associated expected 
change in its volatility. 

A number of researchers have implemented 
stochastic volatility models and used the 
models’ assumptions to convert the usual delta 
to an MV delta. They have found that this 
produces an improvement in delta hedging 
performance, particularly for out-of-the-money 
options. The researchers include Bakshi et al 
(1997) who implemented three different 
stochastic volatility models using data on call 
options on the S&P 500 between June 1988 and 
May 19913; Bakshi et al (2000), who looked at 
short and long-term options on the S&P 500 
between September 1993 and August 1995;  
Alexander and Nogueira (2007), who looked at 
call options on the S&P 500 during a six month 
period in 2004; Alexander et al (2009), who 
consider the hedging performance of six 
different models using put and call options on 
the S&P 500 trading in 2007; and Poulsen et al 
(2009) who looked at data on S&P 500 options, 
Eurostoxx index options, and options on the 
U.S. dollar euro exchange rate during the 2004 
to 2008 period. Bartlett (2006) shows how a 
minimum variance hedge can be used in 
conjunction with the SABR stochastic volatility 
model proposed by Hagen et al (2002).  

This paper is different from the research just 
mentioned in that it is not based on a stochastic 
volatility model. It is similar in spirit to papers 
such as Crépey (2004), Vähämaa (2004) and 
Alexander et al (2012) which consider different 
ways in which the Black-Scholes delta can be 

                                                 
3
 They also looked at puts on the S&P 500, but did 

not report the results as they were similar to calls. 
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adjusted to reflect the volatility smile.  These 
authors note that minimum variance delta is 
the Black-Scholes delta plus the Black-Scholes 
vega times the partial derivative of the 
expected implied volatility with respect to the 
asset price. Improving delta therefore requires 
an assumption about the partial derivative of 
the expected implied volatility with respect to 
the asset price. Crépey (2004) and Vähämaa 
(2004) test setting the partial derivative equal 
to (or close to) the (negative) slope of the 
volatility smile.4 Alexander et al (2012) build on 
the research of Derman (1999) and test eight 
different models for the partial derivative, 
including a number of regime-switching models.  

This paper extends previous research by 
determining empirically a model for the partial 
derivative of the expected implied volatility 
with respect to asset price. We look at data on a 
wide range of assets over a long period of time. 
Specifically, we use data on options on three 
stock indices, a number of individual stocks, and 
ETFs based on commodity and bond prices over 
a twelve-year period. Moneyness is measured 
by the Black-Scholes delta. We show that to a 
good approximation the partial derivative of an 
option’s expected implied volatility with respect 
to the asset price is a quadratic function of the 
delta of the option divided by the product of 
the asset price and the square root of the time 
to maturity. This leads to a simple model where 
the MV delta is calculated from the practitioner 
Black-Scholes delta, the practitioner Black-
Scholes vega, the asset price, and the time to 
maturity. We show that the hedging gain is 
better than that obtained using a stochastic 
volatility model or a local volatility model. The 
results have practical relevance to traders, 
many of whom still base their decision making 
on output from the practitioner Black-Scholes 
model. The results also lend support to the 
volatility feedback effect explanation for the 

                                                 
4
 As discussed by Derman et al (1995) and Coleman 

et al (2001), this assumption corresponds to the local 
volatility model of Dupire (1994).  We explain this 
later. 

negative relation between equity prices and 
implied volatility, mentioned earlier. 

The structure of the rest of the papers is as 
follows. We first discuss the nature of the data 
that we use. Second, we develop the theory 
that allows us to parameterize the evolution of 
the implied volatilities of options. The theory is 
implemented and tested out-of-sample using 
options on the S&P 500, which are very actively 
traded. The results are compared with those 
from a stochastic volatility and a local volatility 
model. Based on the results for the S&P 500 we 
then carry out tests for options on other indices 
and for options on individual stocks and ETFs.  

 

2. DATA 

We used data from OptionMetrics. This is a 
convenient data source for our research. It 
provides daily prices for the underlying asset, 
closing bid and offer quotes for options, and 
hedge parameters based on the practitioner 
Black-Scholes model. We chose to consider 
options on the S&P 500, S&P 100, the Dow 
Jones Industrial Average of 30 stocks (DJIA), the 
individual stocks underlying the DJIA and five 
ETFs. The assets underlying three of the ETFs 
are commodities, gold (GLD), silver (SLV) and oil 
(USO). The assets underlying the other two ETFs 
were the Barclays U.S. 20+ year Treasury Bond 
Index (TLT) and the Barclays U.S. 7-10 year 
Treasury Bond Index (IEF). The options on the 
S&P 500 and the DJIA are European. Both 
European and American options on the S&P 100 
are included in our data set. Options on 
individual stocks and those on ETFs are 
American. The period covered by the data we 
used is January 2, 2004 to August 31, 2015 
except for the commodity ETFs where data was 
first available in 2008.5  

Only option quotes for which the bid price, 
offer price, implied volatility, delta, gamma, 

                                                 
5
 This is a much longer period than that used by 

other researchers except Alexander et al (2012). 
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vega, and theta were available were retained. 
The option data set was sorted to produce 
observations for the same option on two 
successive trading days. For every pair of 
observations the data was normalized so that 
the underlying price on the first of the two days 
was one. Options with remaining lives less than 
14 days were removed from the data set. Call 
options for which the practitioner Black-Scholes 
delta was less than 0.05 or greater than 0.95, 
and put options for which the practitioner 
Black-Scholes delta was less than –0.95 or 
greater than –0.05 were removed from the data 
set. For options on individual stocks, in addition 
to the filters used for options on the indices, 
days on which stock splits occurred were 
removed. 

Table 1 shows the number of price quotations 
for options of different maturities and 
moneyness after all filtering. The degree of 
moneyness is measured by the option delta.6 
The option deltas in Table 1 are rounded to the 
nearest tenth. Table 2 shows the volume of 
trading by option delta. The trading volume for 
puts on the S&P 500 is much greater than that 
for calls.7 Puts and calls trade in approximately 
equal volumes for other indices. Calls trade 
more actively than puts for the individual 
stocks. Trading tends to be concentrated in 
close-to-the-money and out-of-the-money 
options. One notable feature of Table 2 is that 
the trading of close-to-the-money call options is 
particularly popular. Although not evident from 
Table 2, the majority of trading is in options 
with maturities less than 91 days. 

                                                 
6
 This measure of moneyness is commonly used by 

traders. An “at-the-money option” is considered to 

be a call with BS = 0.5 or put with BS  = −0.5. An 
advantage of this measure over K/S (where K is the 
strike price and S is the equity price) is that it takes 
account of the life of the option. A two-week call 
option where K/S = .1 is more out of the money that 
a two-year call option with the same value of K/S. 
7
 The bid-offer spread for puts on the S&P 500 is 

smaller than that for calls except in the case of deep 
in-the-money options where the spreads are about 
the same. 

 

3. BACKGROUND THEORY 

Define S as the change in an asset price over 

one trading day and f as the change in the 
price of an option on the asset during this 

period.  The minimum variance delta, MV, is 
the value that minimizes the variance of 8 

 MVf S    (1) 

The dependence of the price of an option on 
uncertainties associated with interest rates and 
dividends is usually very small.  The price of a 
European-style option, f, on an asset whose 
price is S can therefore be approximated as  

  BS imp,f f S   

where fBS is the Black-Scholes-Merton pricing 

function and imp is the implied volatility.  

The MV delta, MV, takes into account both 

changes in S and expected changes in imp as a 
result of changes in S. This leads to  
 

   imp impBS BS
MV BS BS

imp

E Ef f

S S S

    
     

   
 (2) 

where BS is the practitioner Black-Scholes vega 

and E(imp) is the expected value of the 
implied volatility as a function of S. Other 
authors, in particular Alexander et al (2012), 
have explored the effectiveness of various 

estimates ∂E(imp)/∂S in determining the 
minimum variance delta. In what follows we 
estimate this function empirically and then 
conduct out of sample tests of the effectiveness 
of the estimated function. The tests are carried 
out on European and American stock index 
options, options on individual stocks, options on 
commodity ETFs, and options on interest rate 
ETFs.  

                                                 
8
 An early application of this type of hedging analysis 

to futures markets is Ederington (1979) 
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When presenting our results, we shall define 
the effectiveness of a hedge as the percentage 
reduction in the sum of the squared residuals 
resulting from the hedge. We denote the Gain 
from an MV hedge as the percentage increase 
in the effectiveness of an MV hedge over the 
effectiveness of the Black-Scholes hedge. Thus: 

 
 
 

MV
Gain 1

SSE f S

SSE f S

  
 

 
  (3) 

where SSE denotes sum of squared errors. 

 

4. EXPLORATORY ANALYSIS OF 
S&P 500 OPTIONS 

In this section we explore the characteristics of 
the MV delta for options on the S&P 500 with 
the objective of determining the functional 
form of the MV delta. Once we have a 
candidate functional form, we test it out of 
sample for both options on the S&P 500 and 
options on other assets. 

We start our exploration of MV hedging for the 
S&P 500 options with an implementation of 
equation (1).  

 MVf S      (4) 

Because the mean of S and f are both close 

to zero, minimizing the variance of  in this 
equation, and other similar equations that we 
will test, is functionally equivalent to minimizing 
the sum of squared values. Several other 
variations on the model were tried such as 

using non-normalized data, replacing f with 

f – BSt, where BS is the practitioner Black-

Scholes theta9 and t is one trading day, or 

                                                 
9
 The practitioner Black-Scholes theta is the partial 

derivative with respect to the passage of time with 
the volatility set equal to the implied volatility) and 

t is one day. If the asset price and its implied 

including an intercept. None of the variations 
had a material effect on the results we present. 
The results that we report are for the model in 
(4), or similar models.  

We estimated equation (4) for call and put 
options divided into nine different buckets 

according to the value of BS rounded to the 
nearest tenth, and seven different option 
maturities. For each delta and each maturity 

bucket the value of MV is estimated. The 

differences between the estimated MV and the 

average BS for the buckets are shown in Table 

3. In all cases MV – BS is negative. This means 
that on average, traders of S&P 500 index 
options should under-hedge call options and 

over-hedge put options relative to BS.10  Our 
results are consistent with those of other 
researchers who find that the MV delta is less 
than the practitioner Black-Scholes delta.  

We now present arguments that MV for an 
option depends only on the moneyness of the 

option, as measured by BS. First, it is 
reasonable to assume that the option pricing 
model is scale invariant.11 This means that the 
option price depends on the asset price only 

through its dependence on BS. Second, the 
results in Table 3 show that the MV delta is not 
particularly sensitive to the option maturity 
except for very short- and very long-term put 
options. This means that the option price can be 
assumed to depend on time only through its 

dependence on BS.  Third, the dependence of 
the option price on dividend yields and interest 
rates is small.  From equation (2), this means 
that  

                                                                         
volatility do not change, the option price can be 

expected to decline by about BSt in one day. 
10 A call has a positive delta and the MV delta, MV, 

is less positive than BS; a put has a negative delta 

and MV is more negative than BS. 
11

 A scale invariant model is one where the 
distribution of St / S0 is independent of S0. See for 
example Alexander and Nogueira (2007). 
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S

E






)( imp

BS  

is dependent on BS, but can otherwise be 
assumed to be independent of S and T.  

The practitioner Black-Scholes vega, BS, of a 
European option is, to a reasonable 
approximation, given by12 
 

  BS BSS TG     

for some function G where T is the time to the 
option maturity. It follows that the expected 
rate of change of the implied volatility with 
respect to changes in the stock price must have 
the form 

 
   imp BS

E H

S S T

  



  (5) 

The results in Table 3 suggest that a single 
quadratic function for H is likely to provide a 
good fit across all delta buckets and maturities. 
Equation (2) then becomes 

 

2

BS BS
MV BS BS

a b c

S T

   
      

and equation (4) becomes 
 

  2BS
BS BS BS

S
f S a b c

ST

 
             (6) 

                                                 
12

 For European options,  BS 1

qTS T N d e   where 
2

1 ln( / ) ( / 2)d S K r q T T       , K is the strike 

price, T is the time to maturity, r is the risk-free rate, 
q is the dividend yield, and N is the cumulative 
normal distribution function. However, 

BS 1( ) qTN d e   so that 1

1 ( )qT

BSd N e  .  As a result, 

 1

BS BS( )qT qTv S T N N e e   . Given that q is small 

(less than 3%), this shows that  BSv S T is 

approximately dependent only on BS.  

From equation (5), the expected volatility 
surface change for a proportional change in S is 
given by 

  
2

BS BS
imp

a b c S
E

ST

     
   

 
 (7) 

For a given value of BS the response of the 
implied volatility to a percentage change in the 
stock price is inversely proportional to the 
square root of the time to maturity. Similar 
“square root of time rules” have been 
mentioned elsewhere.13  
To this point our work has been largely 
descriptive, motivated by a desire to produce a 
simple model of how the volatility surface for 
S&P 500 options evolves as a result of stock 
price changes. Our simple model is that for a 
particular moneyness and a particular stock 
price change, the expected size of the change in 
the implied volatility is inversely proportional to 
the square-root of the option life. For a 
particular option maturity and a particular stock 
price change, the expected size of the change in 
the implied volatility is the option vega 
multiplied by a quadratic function of our 

measure of moneyness, BS. The same model 
applies across the range of deltas considered.  

 

5. OUT OF SAMPLE TESTS OF 
S&P 500 OPTIONS 

We now consider whether our simple model of 
the evolution of the volatility surface can be 
used to improve hedging performance. That is, 
can we estimate the MV delta using historical 
data and then use that estimate to reduce the 
variance of the hedging error in the future. In 
carrying out this test we will use a moving 
window where parameters are estimated over a 
36-month period and then used to determine 

                                                 
13

 See for example Hull (2015, p439) which explains 
that some traders choose to incorporate the square 
root of time rule in estimates of the volatility smile 
and Daglish et al (2007) which provides some 
empirical support for the square root of time rule. 
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MV hedges during the following month. The 
first month for which MV hedges are estimated 
is January 2007 and the last is August 2015. We 
tested moving windows of length between 12- 
and 60-months but did not find that any one of 
these was materially better than the others.14  
The only element of our simple model that is 
unknown is the quadratic function of 
moneyness in equation (6), our H function. We 
estimate the model parameters, a, b and c, 
using equation (6) fitted to all options in each 
estimation period. The estimation is done 
separately for puts and calls. The estimated 
coefficients, a, b and c, are shown in Figure 1. 
Usually, the parameters of the best fit quadratic 
model change slowly through time, but during 
the credit crisis of 2008 some extreme changes 
were observed. 
The Gain (equation (3)) resulting from using our 
model to hedge for the next month is then 
calculated using the estimated parameters. On 
average the Gain is about 17% for calls and 11% 
for puts. We also calculated the Gain for each 
delta bucket. The average Gain achieved for 
each delta bucket and the standard error of the 
estimate are shown in Table 4. This shows that 
for call options the Gain is largest for out-of-
the-money options (a Gain of about 32% for the 
highest strike options) and smallest for in-the-
money options. For put options the Gains are 
more uniformly distributed across option 
strikes. 

Figures 2 and 3 show the value of MV – BS, 
and the expected change in the implied 
volatility, that is estimated for calls and puts 
based on the average three-year calibration 
results for the period January 2012 to July 
2015.15 (This period was chosen to avoid using 

                                                 
14

 In all our reported results we consider one day 
changes in option prices and implied volatilities 
when estimating the MV hedge parameters. Slightly 
better results occur if the observation period is 
increased to several trading days. 
15

 As explained in the previous section both MV−BS 

and the rate of change of implied volatility with 
respected to the proportional change in the stock 

data from the credit crisis.) Put-call parity shows 

that MV – BS and the expected change in 
implied volatility should be the same for a call 
and a put when they have the same strike price 
and time to maturity.16 In Figures 2 and 3, calls 

and puts with the put BS equal to the call BS 
minus one are compared. This means that calls 
and puts with approximately the same strike 
prices are being compared.17  In the case of 
Figure 2 the comparison is across a range of 
maturities.  
We confined our hedging effectiveness test to 
options with maturities greater than 13 days. 
This eliminates very short term options. 
Including the very short maturity options 
worsens our results due to the large gammas of 
short-term options that are close to the money, 
but does not eliminate them.  
MV hedging works better for calls than puts and 
better for out-of-the-money options than in-
the-money options. To understand why this is 
the case we directly estimate the relationship 
between implied volatility changes and stock 

price changes by estimating  in 
 

 imp

S

ST

 
      (8) 

The estimation is done separately for puts and 
calls for every delta bucket using all options 
observed between 2004 and 2015. The R2 for 
each delta bucket is shown in Figure 4.  

                                                                         
price are dependent only on BS to a good 
approximation. 
16

 Define MV,c and MV,p as the minimum variance 

call and put deltas, and BS,c and BS,p as the Black-
Scholes call and put deltas. From the put call parity 

equation and equation (2) it follows that MV,c –

 MV,p and BS,c – BS,p  both equal e
−qT

 where q is the 
dividend yield and T is the time to maturity.  

Subtracting the two equations shows that MV,c –

 BS,c= MV,p – BS,p. 
17

 Define q as the dividend yield and T as the time to 
maturity. Calls and puts have the same strike price if 
the put delta equals the call delta minus e

−qT
. They 

have only approximately the same strike price when 
the put delta equals the call delta minus one. 
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The average R2 from the estimation in equation 

(8) for calls with BS in the 0.1 bucket is about 
0.60. That is, the change in the implied volatility 
due to changes in the stock price explains about 
60% of the total variation in implied volatilities. 

As BS increases the average R2 declines due to 
increased idiosyncratic noise in the implied 
volatility data. This explains the effectiveness of 
MV hedging for out-of-the money calls and the 
declining effectiveness of MV hedging for in-
the-money calls. 
The results for put options are somewhat 
different. The fraction of total variance in 
implied volatilities explained by changes in the 
stock price is much smaller than that observed 
for call options. There is much more 
idiosyncratic variation in the implied volatilities 
of put options. As a result, MV hedging of puts 
is much less effective than for calls. 
 
A Put-Call Parity Test 

We used our quadratic model to test how well 
put-call parity has held over the period covered 
by our data. We first used the put-call parity 
relationship to turn all call prices in our data set 
into synthetic put prices. We estimated a, b, 
and c in our quadratic form using the actual put 

prices, and â , b̂ , and ĉ  using the synthetic put 
prices for each of our three-year calibration 
periods. We then calculated the root mean 
square error of the difference between the 
estimated put parameters and the put 
parameters calculated from the synthetic put 
data under the assumption that put-call parity 
holds: 

 
     

22 2ˆˆ ˆ

3

a a b b c c
RMSE

    
   (9) 

The results are shown in Figure 5. These results 
suggest that put-call parity was seriously 
violated before December 2008 but that 
thereafter it was approximately true. (The first 
observation of the post-December 2008 period 
is December 2011.) 

 

6. COMPARISON WITH 
ALTERNATIVE MODELS 

In the previous section we tested an empirical 
model to determine the minimum variance 
delta hedge. The results show that a reasonable 
improvement in hedging accuracy can be 
achieved in this way. However, as mentioned 
earlier, other researchers have calculated 
minimum variance deltas from stochastic 
volatility models and local volatility models. In 
this section we compare the performance of 
our empirical model with these two categories 
of models. 

 

Stochastic Volatility Model 

The stochastic volatility model we use is a 
particular version of the SABR model discussed 
by Hagen et al. (2002):18 

 
dF Fdz

d dw

 

  
 (10) 

where F is the futures stock price when the 
numeraire is the zero coupon bond with 
Maturity T. The dz and dw are Wiener processes 

with constant correlation  and is a constant 
volatility of volatility parameter. In this model 
the expected change in the volatility given a 
particular change in the futures price is 

  
dF

E d dF
F

     

                                                 
18

 As pointed out by Poulsen et al (2009), similar 
results are obtained for different stochastic volatility 

models. In the general SABR model dF F dz  . 

Setting =1 ensures scale invariance which is a 
reasonable property for equities and equity indices. 
The model we choose is equivalent to a version of 
the model in Hull and White (1987). 
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Hagan et al (2002) and Rebonato et al (2009) 
show that under the model defined by equation 
(10), a good approximation to the implied 
volatility for an option with strike price K and 
time to maturity T is 

 
2

20
imp 0 0 0

2 3
, 1

( ) 4 24

y
S T

y

        
          

      

 (11) 

where 

 

0

0

2

ln

1 2
( ) ln

1

F
y

K

y y y
y





     
  
 
 

 

and F0 and 0 are the initial values of the 
futures stock price and the stochastic volatility 
respectively. 

Define BS( , )f F   as the value of an option 

given by the Black-Scholes-Merton assumptions 
when the futures stock price is F and the 

volatility is . If f is the value of an option, an 
estimate of the minimum variance delta given 
by the model is then 

 

       BS 0 imp 0 0 BS 0 imp 0 0

SV

, , , ,f F F F F F F f F FE f F

F F

        
  

 
 

       BS 0 imp 0 0 BS 0 imp 0 0

SV

, , , ,f F F F F F F f F FE f F

F F

        
  

 

 (12) 

The procedure for implementing this model is 
as follows. On each trading day the implied 
volatilities of all options with a particular 
maturity are determined.19 The parameters for 

                                                 
19

 In practice the SABR model is used as a model for 
the behavior of all options with a particular maturity. 
When calibrated to all options of all maturities we 

the stochastic volatility model (0, , and ) 
that are to be used for that particular option 
maturity are chosen to minimize the sum of 
squared differences between the market 
implied volatilities and the model implied 
volatilities given by equation (11).20 Once the 
model parameters are determined for the 
particular maturity, the minimum variance delta 
is then determined for each option with that 
maturity using equation (12). This procedure is 
repeated for every maturity observed on each 
trading day. 

To align the tests of the stochastic volatility 
model with the tests of our empirical model we 
calibrated the model for every option maturity 
every day from the start of 2007 to August 
2015. Puts and calls were considered 
separately. Since there are about 13 different 
maturities observed on each trading day we are 
estimating about 78 model parameters on each 
trading day. In total, about 29,000 optimizations 
are carried out and about 87,000 model 
parameters are estimated. The estimated 
parameters are reasonable and provide a good 
fit to the observed implied volatilities. The 

average initial volatility, 0, is about 19% which 
is approximately equal to the average at-the-
money option implied volatility, the average 

volatility of the volatility, , is about 1.2, and 
the average correlation is about –0.85 while the 
root mean square error in fitting the implied 
volatility is about 0.32%. 

Table 5 compares the Gain from the SABR 
model with the Gain from the empirical model 
developed in this paper. The results are 
aggregated by Black-Scholes delta rounded to 
the nearest tenth. The table shows, the 
stochastic volatility model is materially worse at 

                                                                         
find that it provides poor results. This is not 
surprising as the model is not designed to fit the 
term structure of implied volatilities.  
20

 For a particular maturity to be included in our 
sample on any day we require that there be options 
with more than 10 different strike prices and that 
the root mean square error in fitting the implied 
volatilities be smaller than 1%. 
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reducing hedging variance than is our empirical 
model. To put this in perspective recall that in 
our empirical approach we estimate only the 
three coefficients of the quadratic function 
(equation (6)) and update the estimate once 
month, a total of 104 calibrations and 312 
parameters estimated compared to the nearly 
one hundred thousand parameters of the SABR 
model. Overall the SABR model performs less 
well than our empirical model. Its performance 
is better than the empirical model only for very-
deep-in-the-model options. For options which 
trade actively, the empirical model is clearly 
better.  

 

Local Volatility Model 

The slope of the volatility smile plays a key role 
determining the partial derivative of the 
expected implied volatility with respect to the 
asset price for the local volatility model. To 
understand this, suppose that the current 
futures price of an asset for a contract with 

maturity T is F0. Define  0 , , ,c F K r T  and 

 0 , , ,p F K r T  as the prices of European call 

and European put futures options with strike 

price K and maturity T. The variable  denotes 
the stochastic process followed by the futures 
price when the numeraire is a zero-coupon 
bond price with maturity T. The risk-free rate 
for maturity T, r, is the yield on the numeraire 
zero coupon bond. 
The call option is equivalent to a European put 
option with maturity T to sell the strike price for 
the futures price. If we use the futures price, F, 
as the numeraire, the equivalent put option can 
be seen to be F0 times a put option to sell 

FK /  for 1. It follows that21 

                                                 
21

 One way to understand equation (13) is to 
suppose that we are dealing with a foreign currency 
option that can be regarded as a call to buy one unit 
of currency B for K units of currency A or a put to sell 
K units currency A for one unit of currency B. As a 
first step, the call option is valued in currency A and 
the put option is valued in currency B.  

  0 0

0

, , , ,1, ,
K

c F K r T F p r T
F

 
   

 
  (13) 

A position in F0 options to sell K F  for 1 is 

equivalent to a position in one option to sell K 
for F. Hence equation (13) becomes 

    0 0, , , , , ,c F K r T p K F r T     (14) 

Now one particular assumption about  is that 
it is geometric Brownian motion with volatility 

. We denote this by “GBM, ”.  It follows that 

   0 0, , , GBM, , , , GBM,c F K r T p K F r T  

  (15) 

The implied volatility for the call is the value of 

 that equates the right hand side of equation 
(15) with the right hand side of equation (14). 
Equations (14) and (15) imply that this value of 

 also equates the left hand side of equation 
(15) with the left hand side of equation (14). It 
follows that the implied volatility of the call 
option in equation (14) is the same as the 
implied volatility of the put option in equation 
(14). Because the implied volatility of a 
European call is the same as the implied 
volatility of a European put, it follows that   

    imp 0 imp 0, , , , , ,F K r T K F r T      (16) 

where  imp 0 , , ,F K r T   is the implied 

volatility of a European option with parameters, 
F0, K, r, and T. Note that we have not yet made 

any assumptions about . Equations (14) and 
(16) are identities true for all stochastic 

processes . 

If a local volatility model of the form 

FdztFdF ),(  
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is assumed, the implied volatility must be a 
deterministic function of F. Similarly to Coleman 
(2001), we can then differentiate equation (16) 
with respect to F0 to obtain22 

   imp 0 imp 0

0 0

, , , , , ,F K r T K F r T

F F

   


 
  (17) 

The left hand side is the partial derivative of the 
implied volatility with respect to the futures 
price for the option under consideration. The 
right hand side is the partial derivative of the 
implied volatility with respect to the strike price 
for an imaginary option where today’s futures 
price is the strike price, K, of the option we are 
considering and the strike price is today’s 
futures price. For an at-the-money option 
where K = F0, equation (17) shows that the 
partial derivative of the implied volatility with 
respect to the futures price equals the slope of 
the volatility smile.23   

We now apply this result to the S&P 500 spot 
options we are considering. Because the futures 
contract has maturity T, a call (put) option on 
spot with maturity T and strike K is the same as 
a call (put) futures option with maturity T and 
strike K. Suppose that the current value of the 
index is S0 and the dividend yield for maturity T 
is q. The futures option is at-the-money when F0 
= K. Because F0 = S0e

(r–q)T the spot option is at 
the money when K = S0e

(r–q)T. The partial 
derivative of the expected implied volatility 
with respect to S0 equals e(r–q)T times the partial 

                                                 
22

 The subsequent analysis is valid if the weaker 
result 

   imp 0 imp 0

0 0

, , , , , ,E F K r T E K F r T

F F

           
 

 

where E denotes expected value holds. This result 
may be a reasonable approximation for some 
stochastic volatility models. The analysis given is also 
valid for American-style futures options. 
23

 Interestingly, for American futures options, a 
similar argument shows that the partial derivative of 
an at-the-money call equals the slope of the 
volatility smile for puts at the at-the-money point 
and vice versa.  

derivative with respect to F0. It follows that, for 
an option where K = S0e

(r–q)T, the partial 
derivative of the implied volatility with respect 
to S0 equals the slope of the volatility smile 
times e(r–q)T.  We assume this result is 
approximately true for other options which are 
not at the money. This is equivalent to the 
assumption that (a) the volatility smile is linear 
and (b) the volatility smile exhibits parallel 
shifts. These two assumptions are 
approximately, but not exactly, true. 

We find that a quadratic gives an excellent fit to 
the implied volatility smile for a particular 
maturity. We therefore determined the slope of 
smile model for each maturity on each day by 
fitting a quadratic function to the smile and 
using it to determine the slope of the smile 
when K = S0e

(r–q)T. The results are shown in Table 
5.24 The results are clearly worse than for the 
empirical model. The slope-of-smile results for 
out-of-the money call options are better than 
those for the stochastic volatility model, but 
they are worse for at-the-money and in-the-
money options.  For put options the results are 
generally bad, presumably because of the 
idiosyncratic variation in observed prices 
mentioned earlier.  

 

7. RESULTS FOR OTHER STOCK 
INDICES 

We now return to a consideration of the 
empirical model and test how well it works for 
other stock indices. Specifically, we consider 
European (ticker XEO) and American (ticker 
OEX) options on the S&P 100, and European 
options on the Dow Jones Industrial Index 
(ticker DJX). We carry out out-of-sample tests 
similar to those done on the S&P 500. The two 
contracts on the S&P 100 are the same except 
for exercise terms. They therefore allow us to 

                                                 
24

 We experimented with other implementations of 
the slope-of-smile model but did not obtain better 
results. 
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explore the degree to which hedging differs for 
American options.  

The out of sample test was based on estimating 
the three parameters of the quadratic function 
in equation (6) using options of all strikes and 
maturities. The model parameters were 
estimated using a 36-month estimation period 
and the three estimated parameters were then 
used to delta hedge for a one-month testing 
period. The Gain (equation (3)) resulting from 
using our model to hedge in the test period is 
then calculated. The average Gain achieved for 
puts and calls in each delta bucket is shown in 
Table 6. 

The results for call options for all indices are 
essentially the same as those found for options 
on the S&P 500. It is tempting to think that the 
results for the American style (OEX) call options 
are the same as those for the European style 
options because American style call options are 
almost never exercised early and hence are 
effectively European. However, for more than 
80% of the sample tested the S&P 100 dividend 
yield is more than 1.5% higher than the interest 
rate.25 In these circumstances the probability of 
early exercise is high. As a result, it appears that 
the Americanness of the option does not affect 
the hedging effectiveness of our rule of thumb. 

The results for put options are a bit more 
complicated. The results for XEO options were 
similar to those for options on the S&P 500 and 
the results for DJX options are similar but 
weaker. The weaker DJX results may be caused 
by the fact that there are only 30 stocks in the 
index which means that there will be more 
idiosyncratic variation in the implied volatilities.  

Our results for in-the-money American (OEX) 
options are different from our results for all 
other assets in that the Gain for put options is 
greater than the Gain for call options. One 
reason could be that, as previously mentioned, 
interest rates are much lower than dividend 

                                                 
25

 The relevant interest rates were almost invariably 

at least 1.5% lower than the dividend yield between 

January 2009 and August 2015. 

yields for most of the period considered so that 
the American puts are effectively European. 
Overall, the conclusion that can be drawn from 
Table 6 is that our rule of thumb for hedging 
works at least as well for American options as 
for European options. 

 

8. RESULTS FOR SINGLE 
STOCKS AND ETFS 

We repeated the out-of-sample hedging tests 
based on the quadratic model in equation (6) 
for each of the thirty individual stocks 
underlying the DJX and each of the five ETFs. 
The average hedging variance reduction found 
in these tests is reported in Table 7.  

The average hedging gain for call options on 
single stocks are similar to but rather smaller 
than those for options on the Dow Jones 
Industrial Average. For put options the results 
are very poor. MV hedging contributes nothing 
or has a negative effect for puts. To understand 
why this is the case we carried out the 
regression in equation (8) for puts and calls for 
every delta bucket for each of the 30 stocks. 
The average R2 across the thirty stocks is shown 
in Figure 6. 

The behavior of the implied volatilities for call 
options is consistent with our theoretical 
development. The average change in the 
implied volatility as a result of a 1% increase in 
the stock price for call options is similar to the 
predicted expected change shown in Figure 3. 
The R2 exhibits the same pattern observed in 
Figure 4 for options on the S&P 500 but is 
somewhat smaller than that for the index 
options indicating that the idiosyncratic noise is 
larger for individual stocks. The increased 
idiosyncratic noise reduces the MV hedging 
effectiveness by inserting a wedge between 
parameters estimated in one period and the 
parameters that would produce the most 
effective MV hedge in the following period. The 
results for puts are quite different. The fraction 
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of the variance of changes in the implied 
volatility explained by stock price changes, R2, is 
essentially zero. As a result we can expect no 
improvement from MV hedging which is what 
we see. 

The results for the ETFs are divided into results 
for options on commodities (gold, silver, and 
oil) and options on interest-rate products (20+ 
year Treasury Bonds and 7 to 10 year Treasury 
bonds). The results for options on commodities 
are similar to those for individual stocks while 
the results for interest-rate products are similar 
but weaker. As in most of the stock index 
results, MV hedging provides a much bigger 
Gain for call options than put options and the 
gain is greatest for out-of-the-money options. 
The negative correlation between price and 
implied volatility for commodities and interest 
rate products cannot be explained by a leverage 
and therefore lends support for the volatility 
feedback hypothesis mentioned earlier. 

 

9. CONCLUSIONS 

 
Delta is by far the most important Greek letter. 
It plays a key role in the management of 
portfolios of options. Option traders take steps 
to ensure that they are close to delta neutral at 
least once a day and derivatives dealers usually 
specify delta limits for their traders. This paper 
has investigated empirically the difference 
between the practitioner Black-Scholes delta 
and the minimum variance delta. The negative 
relation between price and volatility for equities 
means that the minimum variance delta is 
always less than the practitioner Black-Scholes 
delta. Traders should under-hedge equity call 
options and over-hedge equity put options 
relative to the practitioner Black-Scholes delta.  

The main contribution of this paper is to show 
that a good estimate of the minimum variance 
delta can be obtained from the practitioner 
Black-Scholes delta and an empirical estimate of 

the historical relationship between implied 
volatilities and asset prices. We show that the 
expected movement in implied volatility for an 
option on a stock index can be approximated as 
a quadratic function in the option’s delta 
divided by the square root of time. This leads to 
a formula for converting the practitioner Black-
Scholes delta to the minimum variance delta. 
When the formula is tested out of sample, we 
obtain good results for both European and 
American call options on stock indices. 
However, the reduction in the variance of the 
hedged position is greater for call options than 
for put options. For options on the S&P 500 we 
find that our model gives better results that 
either a stochastic volatility model or a model 
based on the slope of the smile. 

Call options on individual stocks and ETFs 
exhibit the same general behavior as call 
options on stock indices, but the effectiveness 
of MV hedging is greatly reduced because there 
is more noise in the relationship between 
volatility changes and price changes.  For nearly 
all the assets we considered, the results for put 
options are much worse than those for call 
options. In the case of put options on individual 
stocks and ETFs, the results are particularly 
disappointing in that virtually none of the 
variation in changes in implied volatility is 
explained by changes in stock prices. The 
relatively poor performance of MV hedging for 
put options is a puzzle because (a) in the case of 
the European options considered put-call parity 
means that puts and calls can be regarded as 
substitutes for each other and (b) that in the 
case of American options puts are less likely to 
be exercised early than call options for most of 
our sample period. It appears that the reason 
for the discrepancy between calls and puts is a 
result of a very high level of idiosyncratic noise 
in the prices of put options.  

The most striking result is the ubiquity of the 
negative relation between asset price and 
implied volatilities for call option prices. When 
asset prices rise, implied volatilities decline 
resulting in an MV delta that is less than the 
Black-Scholes delta. For options on equities and 
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equity indices this might be explained by a 
leverage argument. As equity prices rise the 
firm becomes less levered and equity volatility 
declines. However, this argument does not 
seem to apply to commodity or bond prices. For 
these assets it seems likely that we have to rely 
on the volatility feedback effect in which an 
increase in volatility raises the required rate of 
return resulting in a stock price decline.  
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Table 1 

The number of price quotations for options on the S&P 500 (SPX), European options on the S&P 

100 (XEO), American options on the S&P 100 (OEX), options on the Dow Jones Industrial 

Average (DJX), the thirty stocks underlying DJX and five ETFs. Numbers reported for the thirty 

stocks are averages per stock. Numbers reported for the five ETFs are averages per ETF. 

Results are reported by bucket based on the practitioners’ Black-Scholes delta rounded to the 

nearest tenth.  

 

Call Options (Thousands of quotations per underlying asset) 

BS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

SPX 153.2 109.6 101.1 102.5 112.4 130.3 159.7 204.7 280.5 1,354.0 

XEO 46.1 36.4 35.1 35.5 38.8 44.6 54.8 68.5 90.4 450.1 

OEX 37.8 28.9 27.8 28.4 31.4 36.0 44.0 60.5 123.8 418.5 

DJX 78.1 56.7 52.5 53.2 57.2 65.3 78.9 93.6 90.0 625.4 

30 Stocks 29.2 18.0 15.3 14.5 14.6 15.6 17.8 22.4 34.1 181.5 

5 ETFs 89.0 50.7 40.3 36.3 35.0 35.1 36.7 41.4 60.0 424.6 

           

Put Options (Thousands of quotations per underlying asset) 

BS –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 Total 

SPX 151.1 100.1 95.7 99.5 110.1 127.9 156.0 207.4 381.3 1,429.2 

XEO 38.6 30.8 32.3 34.2 37.4 43.4 52.9 72.9 131.0 473.6 

OEX 76.9 34.5 29.8 30.4 32.2 36.9 45.3 61.9 111.3 459.4 

DJX 82.9 50.2 47.8 49.9 56.1 63.5 76.7 101.7 162.7 691.4 

30 Stocks 25.8 18.6 15.4 14.6 14.9 16.2 18.9 24.6 45.2 194.3 

5 ETFs 93.5 60.0 45.4 40.2 39.0 39.2 41.4 47.9 77.8 484.4 

 



18 

 

Table 2 

Volume of trading for options on the S&P 500 (SPX), European options on the S&P 100 (XEO), 

American options on the S&P 100 (OEX), options on the Dow Jones Industrial Average (DJX), the 

thirty stocks underlying DJX, and five ETFs. Numbers reported for the thirty stocks are averages 

per stock. Numbers reported for the five ETFs are averages per ETF. 

Results are reported by bucket based on the practitioners’ Black-Scholes delta rounded to the 

nearest tenth.  

 

Call Options (Millions of contracts per underlying asset) 

BS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

SPX 75.8 60.4 53.8 53.4 110.0 41.5 12.7 5.9 3.8 417.2 

XEO 0.7 0.3 0.2 0.5 1.4 0.6 0.1 0.1 0.1 4.1 

OEX 4.6 3.5 2.9 2.7 2.8 1.8 0.7 0.4 0.4 19.7 

DJX 1.4 1.9 2.5 3.0 4.1 2.2 1.0 0.8 0.9 17.9 

30 Stocks 5.4 7.8 8.9 8.8 7.9 5.5 3.7 2.6 3.4 54.0 

5 ETFs 8.7 9.4 9.2 8.8 8.8 4.8 2.4 1.5 1.1 54.8 

           

Put Options (Millions of contracts per underlying asset) 

BS –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 Total 

SPX 2.0 4.0 8.3 23.4 111.0 103.9 104.4 123.6 176.4 656.9 

XEO 0.0 0.1 0.2 0.4 1.3 0.9 0.4 0.7 1.1 5.0 

OEX 0.2 0.3 0.5 1.1 2.8 3.4 3.4 4.0 6.4 22.0 

DJX 0.3 0.5 0.7 1.5 3.3 3.5 3.0 2.7 2.5 17.9 

30 Stocks 0.8 1.1 1.6 2.6 4.4 5.9 6.6 6.4 5.3 34.8 

5 ETFs 0.5 0.8 1.3 2.5 6.0 7.5 7.8 8.0 7.4 41.8 
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Table 3 

The excess of the MV delta, MV, over the practitioner Black-Scholes delta, BS, for all options 

on the S&P 500 observed from 2004 to 2015. In this exploratory analysis options are divided 

into ten buckets according to their practitioner Black-Scholes deltas rounded to the nearest 

tenth. Options are also bucketed by option maturity. 

The average standard error of the estimated values is about 0.0007. 

Call Options: MV – BS 

 Option delta 

Option Life (days) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

14 to 30 –0.036 –0.044 –0.050 –0.058 –0.063 –0.065 –0.069 –0.064 –0.036 

31 to 60 –0.042 –0.055 –0.062 –0.068 –0.072 –0.072 –0.073 –0.067 –0.046 

61 to 91 –0.038 –0.050 –0.061 –0.065 –0.067 –0.068 –0.072 –0.063 –0.045 

92 to 122 –0.041 –0.053 –0.056 –0.066 –0.073 –0.070 –0.073 –0.067 –0.055 

123 to 182 –0.040 –0.056 –0.066 –0.071 –0.077 –0.083 –0.072 –0.065 –0.055 

183 to 365 –0.037 –0.053 –0.062 –0.064 –0.069 –0.070 –0.066 –0.064 –0.056 

More than 365 –0.037 –0.049 –0.054 –0.057 –0.057 –0.057 –0.054 –0.047 –0.030 

All Maturities –0.039 –0.052 –0.059 –0.064 –0.067 –0.068 –0.067 –0.062 –0.046 

 

Put Options: MV – BS 

 Option delta 

Option Life (days) –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 

14 to 30 –0.056 –0.036 –0.031 –0.031 –0.036 –0.037 –0.041 –0.034 –0.013 

31 to 60 –0.046 –0.043 –0.044 –0.046 –0.048 –0.049 –0.051 –0.045 –0.024 

61 to 91 –0.037 –0.041 –0.045 –0.047 –0.047 –0.050 –0.052 –0.048 –0.026 

92 to 122 –0.036 –0.036 –0.035 –0.045 –0.052 –0.046 –0.050 –0.046 –0.029 

123 to 182 –0.052 –0.061 –0.055 –0.054 –0.060 –0.060 –0.054 –0.048 –0.031 

183 to 365 –0.049 –0.063 –0.062 –0.058 –0.059 –0.057 –0.056 –0.053 –0.033 

More than 365 –0.061 –0.078 –0.091 –0.087 –0.081 –0.078 –0.071 –0.061 –0.037 

All Maturities –0.048 –0.054 –0.057 –0.057 –0.058 –0.057 –0.056 –0.049 –0.027 
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Table 4 

The out-of-sample average hedging Gain (equation (3)) for options on the S&P 500 from MV 

delta hedging when the model parameters, a, b and c in equation (6) are estimated using all 

options traded in a 36 month window and then applied to determine the hedge in the next 

month. Results are reported for buckets based on round BS to the nearest tenth. The 

column headed ‘S.E.’ is the standard error of the estimate. 

Call Options Put Options 

BS Gain S.E. BS Gain S.E. 

0.1 32.1% 3.2% –0.9 10.5% 1.9% 

0.2 25.1% 3.1% –0.8 9.6% 2.5% 

0.3 20.9% 2.9% –0.7 9.9% 2.6% 

0.4 17.9% 2.7% –0.6 10.6% 2.7% 

0.5 15.0% 2.7% –0.5 11.1% 2.8% 

0.6 13.4% 2.7% –0.4 12.1% 3.0% 

0.7 11.9% 2.6% –0.3 13.4% 3.2% 

0.8 9.5% 2.7% –0.2 13.8% 3.5% 

0.9 2.7% 2.8% –0.1 9.1% 4.0% 
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Table 5 

The out-of-sample average hedging Gain (equation (3)) for options on the S&P 500 from MV 

delta hedging between January 2007 and August 2015. For the columns headed SABR model, 

the SABR model is calibrated daily and applied to determine the hedge for the next day. For 

columns headed Local Vol, the partial derivative of the expected implied volatility with respect 

to the asset price is calculated from the slope of the smile. For columns headed Empirical 

model, the model parameters, a, b and c in equation (6) are estimated using all options traded 

in a 36 month window and then applied to determine the hedge on every day in the next 

month. Results are reported for buckets based on rounding BS to the nearest tenth.  

 

Calls Puts 

Delta 
SABR 
model 

Local 
Vol 

Empirical 
model 

Delta 
SABR 
model 

Local 
Vol 

Empirical 
model 

0.1 23.1% 32.8% 32.1% –0.9 11.9% –3.9% 10.5% 

0.2 13.7% 20.0% 25.1% –0.8 11.7% –0.2% 9.6% 

0.3 6.8% 10.3% 20.9% –0.7 9.3% –3.4% 9.9% 

0.4 3.4% 3.9% 17.9% –0.6 5.3% –8.2% 10.6% 

0.5 0.4% –0.9% 15.0% –0.5 –0.1% –12.3% 11.1% 

0.6 2.4% –0.7% 13.4% –0.4 –5.5% –14.9% 12.1% 

0.7 5.4% 1.2% 11.9% –0.3 –8.5% –14.4% 13.4% 

0.8 8.1% 3.1% 9.5% –0.2 –11.1% –14.8% 13.8% 

0.9 4.8% –1.7% 2.7% –0.1 –16.3% –22.7% 9.1% 
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Table 6 

The average out-of-sample hedging Gain (equation (3)) from MV delta hedging when the model 

parameters, a, b and c in equation (6) are estimated using options with all strikes and 

maturities observed in a 36 month window and then applied to determine the hedge in the 

next month. Results are reported for each delta bucket for European (XEO) and American (OEX) 

options on the S&P 100 and for European options on the Dow Jones Industrial Index (DJX). 

Call Options 

BS XEO OEX DJX 

0.1 32.2% 31.7% 27.0% 

0.2 26.3% 24.0% 20.2% 

0.3 22.2% 21.0% 17.3% 

0.4 18.4% 17.8% 15.2% 

0.5 16.0% 15.5% 14.1% 

0.6 14.5% 14.1% 13.4% 

0.7 12.6% 13.3% 12.4% 

0.8 10.3% 11.2% 8.2% 

0.9 2.5% 1.4% 1.2% 

 

Put Options 

BS XEO OEX DJX 

–0.9 4.1% 21.5% 1.2% 

–0.8 1.8% 16.6% 1.0% 

–0.7 4.1% 14.5% 2.0% 

–0.6 4.0% 12.4% 2.8% 

–0.5 5.8% 12.4% 3.4% 

–0.4 7.0% 11.6% 3.9% 

–0.3 8.7% 12.1% 5.0% 

–0.2 10.8% 13.6% 6.1% 

–0.1 10.0% 9.7% 5.5% 
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Table 7 

The average out-of-sample hedging Gain (equation (3)) observed across the 30 stocks underlying the 

DJX, the three commodities (gold, silver and oil), and two interest-rate products (20+ year bonds and 7 

to 10 year bonds). The model parameters, a, b and c in equation (6) are estimated using options with all 

strikes and maturities observed in a 36 month window and then applied to determine the hedge in the 

next month. Gain results are reported for each delta bucket in the test month based on rounding BS to 

the nearest tenth.  

 Call Options   Put Options 

BS Stocks Commodities Int. Rates  BS Stocks Commodities Int. Rates 

0.1 20.7% 23.3% 9.1%  –0.9 1.1% 3.0% –0.4% 

0.2 12.7% 15.4% 6.2%  –0.8 1.5% 3.7% –1.6% 

0.3 8.5% 7.9% 6.2%  –0.7 1.5% 1.6% –2.5% 

0.4 5.4% 2.6% 4.8%  –0.6 0.1% –0.6% –2.7% 

0.5 1.9% –1.5% 4.4%  –0.5 –2.4% –3.4% –2.4% 

0.6 –0.5% –4.6% 3.5%  –0.4 –4.4% –6.1% –1.9% 

0.7 –1.1% –5.2% 2.5%  –0.3 –4.6% –6.7% –2.1% 

0.8 –0.4% –3.6% 1.7%  –0.2 –2.4% –6.3% –2.8% 

0.9 0.8% –0.2% –0.4%  –0.1 3.1% –4.0% 3.7% 
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Figure 1 

The estimated parameters for the quadratic in equation (6) puts and calls on the S&P 500 observed 

between 2004 and 2015. The estimations use overlapping 36-month periods. For call options the 

negative of the b parameter is plotted so that the same scale can be used for both charts. 

 

 

 



25 

 

Figure 2 

The difference between the MV delta and the Black–Scholes delta, MV – BS, for options on the S&P 

500 calculated using the quadratic approximation in equation (6). The chart is based on the average of 

the three year calibration parameters estimated for the periods between January 2012 and July 2015.  

The horizontal axis is ordered so that high strike prices are on the right hand end and low strike prices 

are on the left. 
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Figure 3 

The change in the expected implied volatility, E(imp), as a result of a 1% increase in the stock price for 

one-year options on the S&P 500 based on equation (7). For other option maturities, the results shown 

should be divided by the square-root of the option life measured in years. The chart is based on the 

average of the three year calibration parameters estimated for the periods between January 2012 and 

July 2015.  

The horizontal axis is the Black- BS, ordered so that high strike prices are on the right hand 

end and low strike prices are on the left. 
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Figure 4 

The average R2, the fraction of total variance of changes in implied volatility explained by changes in the 

index, for all options on the S&P 500 observed between 2004 and 2015.  

The horizontal axis is ordered so that high strike prices are on the right hand end and low strike prices 

are on the left. 
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Figure 5 

The root mean squared difference between estimated parameters for the quadratic in equation (6) for 

put options, and the parameter values for put option prices that are calculated from call option prices 

under the assumption that put-call parity holds (equation (9)). The estimation uses overlapping 36-

month periods based on options on the S&P 500.  
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Figure 6 

The average R2, the fraction of total variance of changes in implied volatility explained by changes in the 

stock price. The results shown are averaged across the stocks underlying the DJIA.  

The horizontal axis is ordered so that high strike prices are on the right hand end and low strike prices 

are on the left. 

 

 


