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A Resource Estimation Framework For Quantum Attacks 
Against Cryptographic Functions - Recent Developments

ABOUT THIS REPORT: 
Cryptography fundamentally impacts every aspect of human life. It underpins the security and 
availability of systems upon which we rely deeply. These include communication systems, digital 
identity, internet of things, financial systems, and so on. Today’s cryptographic algorithms fall 
into three categories: public key (asymmetric) systems, private key (symmetric) systems, and 
cryptographic hash functions. Public key systems are used to establish secret keys between two 
remote participants that are only allowed to communicate over a public channel (i.e., a channel that 
can be listened to). Public key cryptography is also used to establish digital signature systems for 
authenticating the origin and integrity of information. Encryption algorithms, or ciphers (an instance 
of symmetric key systems) assume that a secret key is already shared between the participants (via, 
for example, the use of a public key scheme), and are used for fast encryption and decryption of data 
using the shared secret key. Finally, cryptographic hash functions are so called “one-way functions” 
from which one cannot efficiently recover the input by looking at the output - a main ingredient of 
digital identity schemes such as digital signatures.

Quantum computers offer another means to attack the above schemes. In this study we update our 
previous security estimates considering new developments in the theory of quantum algorithms, 
quantum error correction, and quantum circuit optimization. We consider public-key systems such 
as RSA, as well as the AES family of symmetric ciphers and the SHA hash functions. All those schemes 
are widely deployed today and are heavily used in most of today’s cryptographic infrastructure.

Since our previous report was published in February 2020, experimental and theoretical progress 
has been incremental, with no significant breakthroughs. Hence, our current estimates do not 
differ dramatically when compared to our previous report - the most significant developments to be 
outlined.
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Abstract. We update our security estimates against quantum adver-
saries of currently deployed asymmetric (public-key) cryptographic schemes
that comprise of the RSA family, as well as symmetric schemes (ciphers)
that include the AES family, and cryptographic hash functions that in-
clude the SHA-256 and SHA3 families. We use the latest advances in
cryptanalysis, circuit compilation and fault-tolerant theory when pro-
viding the updated estimates. In addition to our previous report from
Feb. 2020, we also explore a novel approach to attacking symmetric cryp-
tographic schemes, and justify why its cryptanalytic impact is negligible.

1 Introduction and methodology

Quantum computers represent a systemic risk to currently deployed crypto-
graphic systems, weakening symmetric cryptography and hash functions [1,2]
and shattering public-key systems based on factoring large numbers (RSA [3])
or solving discrete logarithms in finite groups (including Elliptic Curve Cryp-
tography (ECC) [4,5]) via Shor’s algorithm [6].

As summarized in our previous reports [7,8,9,10,11], the known realistic quan-
tum attacks on cryptographic schemes require full-scale fault-tolerant quantum
computers. Although such full-scale machines are not yet available, the risk they
pose to cryptography is serious and must be addressed today, due to harvest-
and-decrypt-later attacks, and more generally due to the long time required to
reliably migrate systems to new cryptography. Moreover, the scientific commu-
nity overwhelmingly agrees [12,13] that such machines will very likely become
reality.

In our previous reports [7,8,9,10,11] we described in detail the “quantum
hardware and software stack” that must be analyzed when performing a rigor-
ous estimation of the quantum security parameter of the cryptographic schemes
believed to be exponentially hard to attack (AES and SHA families), and we



1. INTRODUCTION AND METHODOLOGY

calculated resource estimations for breaking schemes known to be vulnerable
to quantum attacks (RSA and ECC families). As before, we consider the fault-
tolerant implementations over the surface code [14], as the latter continues to
be considered the most promising candidate for fault-tolerance, and we remind
the reader that the quantum security parameter is defined as the logarithm base
two of the number of fundamental operations (in our case surface code cycles)
required to break the scheme. And for the schemes with polynomial time at-
tacks, we calculate more precise resource estimates at the gate level and report
space and time requirements (and calculate the overall quantum resources, as
described in more detail below).

For the sake of completeness, we depict quantum hardware and software stack
again in Fig. 1, and the interested reader can find more details in our previous
reports. Fig. 1. We reiterate that any improvement in any of the layers in Fig. 1

Logical layer

Fault-tolerant layer

Physical layer

Generate and optimize reversible circuits

Embed reversible circuits into error
correcting codes; estimate resources.

Determine physical resources:
time, qubits, code cycles

Fig. 1. Analyzing an attack against a cryptographic scheme with a fault-tolerant quan-
tum adversary by considering several layers, going from the most abstract one (the
logical layer), to the fault-tolerant layer that implements the circuit in a fault-tolerant
way by taking into account that the physical implementation is imperfect, to the un-
derlying physical layer itself.

decreases the resources (space, i.e., number of qubits, or time, or both) needed
to break the scheme. Therefore keeping track of the latest developments and
advances related to any of those layers is of paramount importance in quantum
cryptanalysis.

For today’s vulnerable public-key schemes, we represent the quantum re-
sources as a single-number quantity that roughly quantifies the product between
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1. INTRODUCTION AND METHODOLOGY

the space (total number of physical qubits) occupied by a quantum circuit and
the time required to run it (which is proportional to its depth, i.e., the number
of non-parallel operations). Note that here is a trade-off between space and time:
within the broad range of relevant parameters one can reduce the time required
to run a quantum circuit by increasing the number of qubits (parallelization)
and vice-versa, while keeping the product between space and time (almost) con-
stant. Therefore the quantum resources can be seen as an “invariant” of the
algorithm’s implementation, roughly quantifying the efficiency of the implemen-
tation of a quantum circuit. In principle, one is free to chose any ‘time/number
of physical qubits’ pairs from the trade-off line, while keeping the quantum re-
sources constant. In this report we represent the quantum resources in units of
megaqubitdays, i.e., millions of qubits required to break the scheme in 24 hours
(1 day).

From the time our previous report [11] was published, the experimental and
theoretical progress to any of the layers depicted in Fig. 1 was relatively in-
cremental, with no significant breakthroughs. Hence, our current estimates do
not differ dramatically in comparison to our previous report. The most signif-
icant progresses are outlined next. For the AES family of ciphers, new devel-
opments [15,16] were made at the logical layer, which contributed to a reduced
complexity of the quantum oracle used to implement the AES reversibly via
Grover’s algorithm. For hash functions, again the most significant progress was
made again at the logical layer [15], therefore reducing the logical resources
required to implement the corresponding oracle in the Grover’s searching algo-
rithm. Finally, for public-key cryptography, most progress was related to im-
proving controlled modular adders quantum circuitry [17] for attacking the RSA
with Shor’s algorithm. A novelty of our report is the analysis of quantum linear
solver-based algorithms against symmetric ciphers1 which highlights how the
method is very unlikely to weaken the security of these schemes. The analysis is
based on a very recent paper co-authored by an author of this paper [18].

Next, we summarize our main findings and compare our new security esti-
mates with the ones from last year [11], for two physical error rates per gate
pg of 10−3 (first-generation fault-tolerant quantum computers) and 10−5 (po-
tential future generation fault-tolerant quantum devices), respectively. For RSA
public-key schemes we tabulate the number of logical qubits required to break
the scheme, the total number of physical qubits, and the corresponding quan-
tum resources (in megaqubitdays), for a physical error rate pg of 10−3 and 10−5,
respectively. For symmetric schemes and hash functions, we tabulate their quan-
tum security parameter (in bits), the number of logical qubits required to break
the scheme, and the total number of physical qubits. Note that in all tables the
number of logical qubits n` include the logical qubits used by the magic state
distillation factories. In addition, we also plot the variation of our estimates of
the quantum resources (public-key schemes) and quantum security parameter qs
(symmetric ciphers and hash functions) as a function of time (from Feb. 2018 to
the present time), due to improved cryptanalytic techniques.

1 This attack was mentioned in one of our previous reports [9]
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2. PUBLIC KEY CRYPTOGRAPHIC SCHEMES – RSA

Note that in all our estimates we used a surface code cycle time of 200ns. For
this reason, if one wants to compare our running times (or the overall quantum
resources) with the ones mentioned in [19], one should multiply our estimates
by a factor of 5, as the authors of [19] used a surface code cycle time of 1000ns.

2 Public key cryptographic schemes – RSA

In [17], the authors present an optimized quantum adder that requires 4n + 2
logical qubits, which, in comparison with previous ones, achieves a significant
reduction (up to 20%) in the number of T gates2. Combining the construction
of [17] with the current state-of-the-art methods in quantum circuitry [19] and
fault-tolerance [20] give rise to the results summarized in the following subsec-
tions.

Note that as we mentioned in our previous reports, there is a trade-off be-
tween the total number of physical qubits required to break the scheme and the
estimated time required to complete the attack. To facilitate the direct compar-
ison with the similar work of [19] and with our previous estimates from [11], we
fixed the expected time to break the scheme to the values outlined in the tables
(or, in other words, we picked a specific point from the space/time trade-off
curve). In principle, since the quantum volume is (to high precision) an invari-
ant, we could have chosen an arbitrary value for the time, while modifying the
corresponding number of physical qubits accordingly so the quantum resources
remain unchanged.

We observe that the new techniques [17] we employ result in a slight increase
of the number of logical qubits by a factor of 1.1 ∼ 1.4, but a net decrease of
the total quantum resources (product of number of qubits and time) by a larger
factor of 3.7 ∼ 4.4 due to the significant reduction of the T-count (number of T
gates).

2.1 RSA-1024

RSA-1024 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 3093 9.62 0.11 0.27 4098 11.06 0.03 0.07

10−5 3093 4.83 0.04 0.21 4098 6.38 0.01 0.05
Table 1. RSA-1024 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources are expressed in units of
megaqubitdays. The corresponding classical security parameter is 80 bits.

2 The T gates contribute to approximately 90% of the physical footprint of a realistic
quantum circuit implemented fault-tolerantly.
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2.2 RSA-2048

RSA-2048 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 6190 19.20 1.17 1.46 8194 22.27 0.27 0.34

10−5 6190 9.66 0.34 0.84 8194 8.70 0.06 0.15
Table 2. RSA-2048 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources (quantum resources) are
expressed in units of megaqubitdays. The corresponding classical security parameter is
112 bits.

2.3 RSA-3072

RSA-3072 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 9288 37.92 4.03 2.55 12290 44.34 0.94 0.59

10−5 9288 14.53 1.14 1.89 12290 19.14 0.30 0.50
Table 3. RSA-3072 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources are expressed in units of
megaqubitdays. The corresponding classical security parameter is 128 bits.

2.4 RSA-4096

RSA-4096 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 12387 54.62 10.10 4.44 16386 72.07 2.67 1.17

10−5 12387 19.31 2.71 3.37 16386 25.48 0.72 0.90

Table 4. RSA-4096 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources are expressed in units of
megaqubitdays. The corresponding classical security parameter is approximately 156
bits.
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2.5 RSA-7680

RSA-7680 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 23239 92.51 86.5 22.41 30722 122.0 22.88 5.93

10−5 23239 28.40 18.9 15.91 30722 37.49 5.00 4.21

Table 5. RSA-7680 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources are expressed in units of
megaqubitdays. The corresponding classical security parameter is 192 bits.

2.6 RSA-15360

RSA-15360 Old estimates Current estimates

pg n` np quantum resources time n` np quantum resources time

10−3 46508 204.0 821 96.5 61442 242.8 195.0 22.9

10−5 46508 72.51 143 47.5 61442 95.71 37.63 12.5

Table 6. RSA-15360 security estimates. Here n` denotes the number of logical qubits,
np denotes the number of physical qubits (in millions), time denotes the expected
time (in hours) to break the scheme, and quantum resources are expressed in units of
megaqubitdays. The corresponding classical security parameter is 256 bits.

2.7 Historical trends

We next plot the variation of our estimates of the quantum resources as a func-
tion of time (from Feb. 2018 to the present time), due to improved cryptanalytic
techniques, for today’s routinely used RSA schemes: RSA-1024, RSA-2048, RSA-
3072, and RSA-4096.
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Fig. 2. RSA-1024 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is 80 bits. The arrow in the figure points towards
the zoomed-in portion of the plot.

Fig. 3. RSA-2048 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is 112 bits. The arrow in the figure points towards
the zoomed-in portion of the plot.
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Fig. 4. RSA-3072 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is 128 bits. The arrow in the figure points towards
the zoomed-in portion of the plot.

Fig. 5. RSA-4096 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is approximately 156 bits. The arrow in the figure
points towards the zoomed-in portion of the plot.
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3 Public key cryptographic schemes – Elliptic-Curve
Diffie-Hellman (ECDH)

Our ECC estimates do not differ from the time of our last report. For com-
pleteness, we plot the variation of our estimates of the quantum resources as a
function of time (from Feb. 2018 to the present time), due to improved crypt-
analytic techniques.

Fig. 6. NIST P-256 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is 128 bits.
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Fig. 7. NIST P-384 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measured in megaqubitdays. The corre-
sponding classical security parameter is 192 bits.

Fig. 8. NIST P-521 quantum resources variation with time due to improved quantum
cryptanalytic techniques, for two physical error rates per gate pg equal to 10−3 and
10−5, respectively. The quantum resources is measurvlad gheorghiued in megaqubit-
days. The corresponding classical security parameter is 256 bits.
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4 Symmetric key cryptographic ciphers

A recent paper by [15] uses dynamic programming techniques to reduce the
multiplicative depth of logic networks, which, for quantum circuits, translates
into a T-depth and T-count reduction, at the cost of increasing the number of
logical qubits by approximately one order of magnitude. Using those new circuits
with our quantum resource estimation toolkit yield the results summarized next.

4.1 AES-128

AES-128 Old estimates Current estimates

pg sq n` np sq n` np

10−3 101.66 15265 7.17× 108 98.95 10924 4.04× 109

10−5 97.19 2545 1.77× 106 94.2 7564 1.74× 107

Table 7. AES-128 security estimates. Here sq denotes the quantum security parameter
(in bits), n` denotes the number of logical qubits, and np denotes the number of physical
qubits.

4.2 AES-192

AES-192 Old estimates Current estimates

pg sq n` np sq n` np

10−3 137.39 163793 2.93× 109 135.29 62156 1.12× 1010

10−5 132.81 23393 7.81× 106 130.67 11756 6.53× 107

Table 8. AES-192 security estimates. Here sq denotes the quantum security parameter
(in bits), n` denotes the number of logical qubits, and np denotes the number of physical
qubits.

4.3 AES-256

AES-256 Old estimates Current estimates

pg sq n` np sq n` np

10−3 170.49 218465 6.56× 109 167.67 63884 2.24× 1010

10−5 166.0 34865 1.61× 107 163.82 13484 1.15× 108

Table 9. AES-256 security estimates. Here sq denotes the quantum security parameter
(in bits), n` denotes the number of logical qubits, and np denotes the number of physical
qubits.
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4.4 Historical trends

Below we display the variation of our estimates of the quantum security parame-
ter qs as a function of time (from Feb. 2018 to the present time), due to improved
cryptanalytic techniques.

Fig. 9. AES-128 quantum security parameter variation with time due to improved
quantum cryptanalytic techniques, for two physical error rates per gate pg equal to
10−3 and 10−5, respectively
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Fig. 10. AES-192 quantum security parameter variation with time due to improved
quantum cryptanalytic techniques, for two physical error rates per gate pg equal to
10−3 and 10−5, respectively

Fig. 11. AES-256 quantum security parameter variation with time due to improved
quantum cryptanalytic techniques, for two physical error rates per gate pg equal to
10−3 and 10−5, respectively
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5 Hash functions

Using the circuit optimization techniques from [15] we obtain the following esti-
mates for the SHA-256 and SHA3-256 family of hash functions.

5.1 SHA-256

SHA-256 Old estimates Current estimates

pg sq n` np sq n` np

10−3 170.45 56402 6.58× 109 168.95 77684 4.90× 1010

10−5 166.36 6002 1.39× 107 165.28 27284 1.10× 108

Table 10. SHA-256 security estimates. Here sq denotes the quantum security param-
eter (in bits), n` denotes the number of logical qubits, and np denotes the number of
physical qubits.

5.2 SHA3-256

SHA3-256 Old estimates Current estimates

pg sq n` np sq n` np

10−3 168.45 6800 1.59× 109 167.18 35152 1.06× 109

10−5 166.47 6800 1.81× 108 166.14 35152 2.31× 108

Table 11. SHA3-256 security estimates. Here sq denotes the quantum security param-
eter (in bits), n` denotes the number of logical qubits, and np denotes the number of
physical qubits.

5.3 Historical trends

Here we display the variation of our estimates of the quantum security parameter
qs as a function of time (from Feb. 2018 to the present time), due to improved
cryptanalytic techniques.
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Fig. 12. SHA-256 quantum security parameter variation with time due to improved
quantum cryptanalytic techniques, for two physical error rates per gate pg equal to
10−3 and 10−5, respectively

Fig. 13. SHA3-256 quantum security parameter variation with time due to improved
quantum cryptanalytic techniques, for two physical error rates per gate pg equal to
10−3 and 10−5, respectively
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6. NOVEL APPROACHES TO ATTACKING SYMMETRIC
CRYPTOGRAPHIC PRIMITIVES

6 Novel approaches to attacking symmetric cryptographic
primitives

Solving systems of multivariate polynomial equations is a fundamental problem
that is NP-complete even when the polynomials are restricted over F2, and
reduces to solving an exponential number of linear equations. The main object
used in this computation is called the Macaulay matrix, which holds coefficients
of linear equations that come from the input polynomials, and multiples of them
(multiplying each polynomial by each monomial up to a certain degree). Each
monomial is represented by a new variable, recasting the polynomial equations
and their multiples as linear equations. The usual classical approach to solve a
polynomial system is based on computing the Gröbner basis of the corresponding
polynomial ideal by triangularizing the Macaulay matrix. Depending on the
type of the polynomial system, much work has been done to characterize and
improve the complexity of solving polynomial systems using the Macaulay matrix
[21,22,23,24,25,26,27].

In quantum computing, the HHL [28] Quantum Linear System (QLS) algo-
rithm can take access to an exponential size matrix A with certain properties, a
quantum state |b〉, and computes a quantum state |x〉 such that µA |x〉 = |b〉 in

time Õ
(
κ2s2

)
,3 where κ is the condition number of A, µ is a normalization fac-

tor, and s is the sparsity of the matrix A. State-of-the-art QLS algorithms have
complexity Õ (κs). Although the QLS algorithm is BQP-complete [28], meaning
that it captures all essential features of quantum computing, a natural “killer-
application” is still to be discovered – showing the difficulty of connecting it to
classical problems. For example, to efficiently solve the classical equation Ax = b,
using the original HHL algorithm, where implicit access is given to an exponen-
tially large matrix A and b, the following must be satisfied: the state |b〉 can be
efficiently prepared, the sought data can be efficiently extracted from the output
state |x〉, and the matrix A should be sparse and well-conditioned [29].

Chen and Gao [30] made an interesting connection between the exponential
size Macaulay matrix and the HHL algorithm. While they use Gröbner bases in
their proof of correctness, they do not explicitly compute the Gröbner basis and
instead use the HHL algorithm to solve the exponentially large system of linear
equations resulting from the Macaulay matrix. In this case, with proper setup,
they show that the access requirements that usually cause so much trouble, can
all be efficiently resolved, namely: having access to an appropriate matrix A,
creating |b〉, and extracting the answer from |x〉. However, a question was left
open: what is the condition number of the matrices, driving the running time?
Intuitively, for arbitrary instances of polynomial systems, the condition number
of the resulting matrix should be large because the approach would solve an
NP-complete problem. But analysis of the size of the condition number was left
open, both in general, and for special cases such as breaking cryptosystems which
have distributions over the problem instances instead of being worst case.

3 We denote O (T · poly log (T ) · poly(1/ε)) by Õ (T ), where ε is the required precision
of the solution.
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We mentioned such a potential attack based on Chen and Gao [30] work in
our previous report [9], however at the time we were not aware whether such an
attack is feasible or not. Very recently, we proved [18] an exponential lower bound
on the condition number κ of the matrix A related to the Boolean polynomial
system, which shows that the quantum algorithm in [30] takes exponential time.
Our result implies that attacks based on the QLS algorithms are impractical, and
therefore pose little threat to currently-deployed symmetric ciphers. We expect
similar behaviour (i.e., exponentially-large condition number) for cryptographic
hash functions, although we did not yet investigate the problem rigorously.

7 Conclusions and future directions

In this report we updated our quantum security estimates for the most common
cryptographic primitives, including the RSA public-key schemes, AES ciphers,
and the SHA-256/SHA3-256 hash functions. For RSA, we observe a reduction in
the total quantum resources by a factor of 5 ∼ 6. For AES, the quantum security
parameter qs is reduced by approximately 2 ∼ 3 bits, and for hash functions, qs
is reduced by approximately 1 ∼ 2 bits.

In addition, in light of new research done with collaborators, we dismissed the
threat posed by quantum linear solver-based algorithms to AES ciphers, which
also strongly suggests they will be ineffective against other strong ciphers and
hash functions. Since the time our previous report was published, most progress
in quantum cryptanalysis was related to novel optimization techniques at the
logical layer, i.e., better quantum circuits for the corresponding circuit elements
used to construct circuits for attacking the aforementioned schemes.

In the future we plan to keep update our estimates for public-key schemes,
symmetric ciphers, and hash functions. For the latter, we intend to prove that
QLS algorithms do not pose a real threat to their security.

We reiterate that estimating the strength of current cryptographic schemes
against realistic quantum attacks is a moving target that depends on a variety
of parameters, such as fault-tolerant quantum error correction, circuit optimiza-
tion and compilation, novel cryptanalysis results, improved quantum algorithms
etc. Monitoring all those (future) advances is therefore our paramount prior-
ity and stresses the importance of preparing for migration to quantum-resistant
cryptographic systems.
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26. Perret, L.: Bases de Gröbner en Cryptographie Post-Quantique. Ph.D. thesis,
UPMC-Paris 6 Sorbonne Universités (2016)
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