
Company Private & Confidential

Research Report on
Resource Requirements Research on the

Quantum Threat Timeline

Prepared for:

Global Risk Institute
28 February 2017

A resource estimation framework for quantum
attacks against cryptographic functions

GRI quantum risk assessment report
Sep. 2016 - Feb. 2017

Vlad Gheorghiu and Michele Mosca

evolutionQ Inc., Waterloo ON, Canada

28 February 2017

Abstract. We analyze the security of several symmetric-key crypto-
graphic functions against an attack from a full-scale fault-tolerant quan-
tum computer. We perform our analysis using an automated software
framework. We also provide a set of lower bounds for attacks via Grover’s
algorithm on arbitrary symmetric cryptographic functions, as a function
of their key sizes and physical error rate per gate, respectively.

1 Introduction

Cryptography is an indispensable ingredient in today’s world, with applications
ranging from secure communication to e-commerce and cryptographic currencies.
Most of modern cryptography falls in one of two categories: symmetric cryptog-
raphy, in which a common secret key is shared in advance among the parties,
and the same key is used for both encryption and decryption, and asymmetric
cryptography, or public key cryptography, in which a pair of public/secret keys
is established among the parties with no need of prior secrecy whatsoever; most
often the secret key is used for decryption and the public key is used for encryp-
tion, however there are schemes in which the roles are interchanged, such as in
digital signatures. Some examples of symmetric ciphers are AES, DES, 3-DES,
whereas examples of public key cryptographic protocols are RSA and Elliptic
Curve Cryptography (ECC). Finally, a special category of cryptographic primi-
tives consists of hash functions, which take an arbitrary long string and compress
it (hash it) to a fixed size such that recovering the input from its hash is com-
putationally unfeasible. Examples of hash functions currently in use are SHA1
(deprecated, but still heavily used), SHA-256, SHA-512, SHA3 and MD5.

Whereas symmetric key cryptography encrypts and decrypts the data ex-
ceedingly fast, it has the drawback that a secret key must be shared in advance.
This fact poses a serious challenge in the real world, where communication chan-
nels cannot be considered a priori secure, such as in internet commerce. Public

1. INTRODUCTION

key cryptography addresses this issue with a solution based on mathematical
hardness of specific problems such as long integer factoring (RSA) or comput-
ing the discrete logarithm in a finite field (ECC). The drawback of public key
cryptography is its relatively slow rate of encryption, which is often orders of
magnitude slower than symmetric key schemes. For this reason most modern
cryptographic protocols consist of a blend of symmetric cryptography, public
key cryptography and hash functions. The public key protocol is used to es-
tablish a pair of public/private keys, which are further used to distribute a
symmetric key, which is then used in a combination with a symmetric cypher as
AES for the actual encryption and decryption. Hash functions are often used in
combination with public key cryptography as part of digital signatures schemes
such as DSA (Digital Signature Algorithm) or EC-DSA (Elliptic Curve Digital
Signature Algorithm).

An important parameter that characterizes the strength of a cryptographic
scheme is its security parameter, or, informally, the number of bits of security.
We say that a scheme has a security parameter s, or equivalently, that it offers
s bits of security against an adversary, provided that the best known attack
by the adversary takes T (s) = 2s time steps. For example, RSA-2048 offers
approximately 112 bits of security, ECC-256 offers 128 bits, whereas AES-128
offers 128 bits, AES-256 offers 256 bits, and SHA-256 offers 256 bits.

Quantum computing represents an entirely new model of computation, which
harnesses the fundamental laws of quantum mechanics to perform computations.
A number of quantum algorithms promise significant asymptotic speedups com-
pared with their classical counterparts [1,2,3]. While most fields of research will
be unaffected by these algorithms until large quantum computers are built, cryp-
tography is affected by the possibility of these algorithms being run at any time
in the future. The hardness assumptions underlying the public key cryptosys-
tems currently in use – those related to factoring and variants of the discrete
logarithm problem – are violated by quantum adversaries. Quantum Fourier sam-
pling techniques break these cryptosystems in polynomial time [1,4]. As a result
these cryptosystems can no longer be considered secure, and ultimately they
will have to be replaced. Some standards bodies have already begun discussions
about transitioning to new public key cryptographic primitives [5,6].

Symmetric primitives, by contrast, are weakened but not necessarily broken
by quantum algorithms. The best generic attacks on symmetric primitives ap-
ply Grover’s quantum search algorithm and achieve a corresponding quadratic
improvement over exhaustive search in a black-box query model [2,7,8]. Such
attacks are not formally efficient, but they do require a re-evaluation of the
concrete security of symmetric primitives.

A conservative defense against attacks based on Grover’s algorithm is to com-
pensate for the potential square root loss in security by doubling the security
parameter. This may mean doubling the key size for a cipher, or doubling the
output length for a hash function. This is a suitable response for the cryptog-
rapher who wants to make worst case assumptions about the potential power
of quantum computers. Others, however, may want to know either 1) the exact

2

2. METHODOLOGY

cost of an attack based on Grover’s algorithm for a particular parameterization
of a cryptosystem, or 2) the minimal security parameter that provides “adequate
protection” in the sense of [9,10,11].

Estimating either of these quantities requires close analysis of the cost of a
realistic implementation of Grover’s algorithm. Overhead is introduced at the
logical level by the reversibility constraint on quantum computations and by
the structure of the Grover iteration itself. Additional overhead may be intro-
duced by fault-tolerance mechanisms required by a particular model of quantum
computation.

In this report we present an estimate of the cost of performing realistic at-
tacks on a variety of cryptographic schemes using a fault-tolerant quantum com-
puter where the quantum error correction is performed using a surface code[12].
The latter seem to be the most promising candidate from the perspective of
experimental realizability. We focus on symmetric schemes attacks via Grover’s
algorithm.

2 Methodology

2.1 Overview

We execute the following procedure for each cryptographic function. First, we
implement the function as a reversible circuit. We then use a quantum circuit op-
timization tool, T -par [13], to minimize the circuit’s T -count and T -depth. This
is necessary because T gates are expensive in our chosen model of quantum com-
putation. With the optimized circuit in hand we estimate the cost of executing
Grover’s algorithm on a surface code based quantum computer. Figure 1 gives a
high-level description of Grover’s algorithm. The algorithm makes bπ4 2k/2c calls
to G, the Grover iteration. The Grover iteration has two subroutines. The first,
Ug, implements the predicate g : {0, 1}k → {0, 1} that maps x to 1 if and only
if f(x) = y. Each call to Ug involves two calls to a reversible implementation of
f and one call to a comparison circuit that checks whether f(x) = y.

Our resource estimates focus on the number of logical qubits in the fault-
tolerant circuit and the overall depth of the circuit in units of surface code
cycles. Each surface code cycle involves the execution of a classical syndrome
decoding routine for every logical qubit. Thus in estimating these quantities we
obtain the cost of an attack purely in terms of classical computing resources.
Separately, we obtain an estimate for the number of physical qubits required for
the circuit, and an estimate for the wall-clock time of the computation.

Our resource estimation methodology takes into account several of the layers
between the high level description of an algorithm and the physical hardware
required for its execution. Our approach is modular should assumptions about
any of these layers change, and hence it allows one to calculate the impact of
improvements in any particular layer. We illustrate our method schematically in
Fig. 2.

All of the analysis in this report is performed via an automated modular
software framework written by us in Python.

3

2. METHODOLOGY

Fig. 1. Grover searching with an oracle for f : {0, 1}k → {0, 1}k.

Run Grover's algorithm

Generate and optimize reversible circuits

Classical query model

Logical layer

Embed reversible circuits into error

correcting codes; estimate resources.

Fault tolerant layer

Determine physical resources (time,

qubits, code cycles).

Physical layer

Fig. 2. Analyzing an attack against a symmetric cryptographic function with a fault-
tolerant quantum adversary.

4

2. METHODOLOGY

2.2 Cost metric for quantum computation

The majority of the overhead for quantum computation, under realistic assump-
tions about quantum computing architectures, comes from error detection and
correction.

There are a number of error correction methods in the literature, however
the most promising, from the perspective of experimental realizability, is the
surface code [12]. Surface codes allow for the detection and correction of errors
on a two-dimensional array of nearest-neighbor coupled physical qubits.

A distance d surface code encodes a single logical qubit into an n× n array
of physical qubits (n = 2d − 1). A classical error correction algorithm must
be run at regular intervals in order to prevent the propagation of physical qubit
errors and, ultimately, to prevent logical errors. This algorithm is just part of the
larger classical control infrastructure required to execute quantum algorithms.
Every surface code cycle involves some number of one and two-qubit physical
quantum gates, physical qubit measurements, and classical processing to detect
and correct errors.

The need for classical processing allows us to make a partial comparison be-
tween the cost of classical and quantum algorithms for any classical cost metric.
The fact that experts in quantum system engineering consider classical process-
ing to be a bottleneck for quantum computation [14] suggests that an analysis
of the classical processing may serve as a good proxy for an analysis of the cost
of quantum computation itself.

Performing this analysis requires that we make a number of assumptions
about how quantum computers will be built, not least of which is the assumption
that quantum computers will require error correcting codes, and that the surface
code will be the code of choice.

Assumption 1 The resources required for any large quantum computation are
well approximated by the resources required for that computation on a surface
code based quantum computer.

Fowler et al. [15] give an algorithm for the classical processing required by
the surface code. A timing analysis of this algorithm was given in [14], and a
parallel variant was presented in [16]. Under a number of physically motivated
assumptions, the algorithm of [16] runs in constant time per round of error
detection. It assumes a quantum computer architecture consisting of an L × L
grid of logical qubits overlaid by a constant density mesh of classical computing
units. More specifically, the proposed design involves one ASIC (application-
specific integrated circuit) for each block of Ca×Ca physical qubits. These ASICs
are capable of nearest-neighbor communication, and the number of rounds of
communication between neighbors is bounded with respect to the error model.
The number of ASICs scales linearly with the number of logical qubits, but the
constant Ca, and the amount of computation each ASIC performs per time step,
is independent of the number of logical qubits.

Each logical qubit is a square grid of n× n physical qubits where n depends
on the length of the computation and the required level of error suppression.

5

2. METHODOLOGY

We are able to estimate n directly. Following [14] we will assume that Ca = n.
The number of classical computing units we estimate is therefore equal to the
number of logical qubits in the circuit. Note that assuming Ca = n introduces
a dependence between Ca and the length of the computation, but we will ig-
nore this detail. Since error correction must be performed on the time scale of
hundreds of nanoseconds (200ns in [12]), we do not expect it to be practical to
make Ca much larger than n. Furthermore, while n depends on the length of the
computation it will always lie in a fairly narrow range. A value of n < 70 is suffi-
cient even for the extremely long computations we consider. The comparatively
short modular exponentiation computations in [12] require n > 31. As long as
it is not practical to take Ca much larger than 70, the assumption that Ca = n
will introduce only a small error in our analysis.

Assumption 2 The classical error correction routine for the surface code on
an L×L grid of logical qubits requires an L×L mesh of classical processors (i.e.
Ca = n).

The algorithm that each ASIC performs is non-trivial and estimating its ex-
act runtime depends on the physical qubit error model. In [14] evidence was
presented that the error correction algorithm requires O(n2) operations, on av-
erage, under a reasonable error model. This work considered a single qubit in
isolation, and some additional overhead would be incurred by communication
between ASICs. A heuristic argument is given in [16] that the communication
overhead is also independent of L, i.e. that the radius of communication for each
processor depends on the noise model but not on the number of logical qubits
in the circuit.

Assumption 3 Each ASIC performs a constant number of operations per sur-
face code cycle.

Finally we (arbitrarily) peg the cost of a surface code cycle to the cost of a
cryptographic function invocation. If we assume, as in [12], that a surface code
cycle time on the order of 100ns is achievable, then we are assuming that each
logical qubit is equipped with an ASIC capable of evaluating several million
function invocations per second.

Assumption 4 The temporal cost of one surface code cycle is equal to the tem-
poral cost of one cryptographic function invocation.

Combining Assumptions 1, 2, and 4 we arrive at the following metric for
comparing the costs of classical and quantum computations.

Cost Metric 1 The cost of a quantum computation involving ` logical qubits for
a duration of σ surface code cycles is equal to the cost of classically evaluating a
cryptographic function ` ·σ times. Equivalently we will say that one logical qubit
cycle is equivalent to one cryptographic function invocation.

We will use the term “cost” to refer either to logical qubit cycles or to cryp-
tographic function invocations.

6

3. RESULTS

2.3 Fault-tolerant cost

The T gate is the most expensive in terms of the resources needed for implement-
ing a circuit fault-tolerantly in a surface code. Most known schemes implement
the T gate using an auxiliary resource called a magic state. The latter is usually
prepared in a faulty manner, and purified to the desired fidelity via a procedure
called magic state distillation. Fault-tolerant magic state distilleries (circuits
for performing magic state distillation) require a substantial number of logical
qubits.

Let T cU denote the T -count of a circuit U (i.e., total number of logical T
gates), and let T dU be the T -depth of the circuit. We denote by TwU = T cU/T

d
U

the T -width of the circuit (i.e., the number of logical T gates that can be done
in parallel on average for each layer of depth). Each T gate requires one logical
magic state of the form

|AL〉 :=
|0L〉+ eiπ/4 |1L〉√

2
(1)

for its implementation. For the entirety of U to run successfully, the magic states
|AL〉 have to be produced with an error rate no larger than pout = 1/T cU .

The magic state distillation procedure is based on the following scheme. The
procedure starts with a physical magic state prepared with some failure prob-
ability pin. This faulty state is then injected into an error correcting code, and
then by performing a suitable distillation procedure on the output carrier qubits
of the encoded state a magic state with a smaller failure probability is distilled.
If this failure probability is still larger than the desired pout, the scheme uses
another layer of distillation, i.e. concatenates the first layer of distillation with a
second layer of distillation, and so forth. The failure probability thus decreases
exponentially.

In the following, we use the Reed-Muller 15-to-1 distillation scheme intro-
duced in [17]. Given a state injection error rate pin, the output error rate after
a layer of distillation can be made arbitrarily close to the ideal pdist = 35p3in
provided we ignore the logical errors that may appear during the distillation
procedure (those can be ignored if the distillation code uses logical qubits with
high enough distance). As pointed out in [18] logical errors do not need to be
fully eliminated. We also assume that the physical error rate per gate in the
surface code, pg, is approximately 10 times smaller than pin, i.e. pg = pin/10,
as during the state injection approximately 10 gates have to perform without a
fault before error protection is available (see [19] for more details).

We define ε so that εpdist represents the amount of logical error introduced,
so pout = (1 + ε)pdist. In the balanced case ε = 1 the logical circuit introduces
the same amount of errors as distillation eliminates.

3 Results

In the following section we summarize our main results. For each cryptographic
function we analyze we tabulate the resources needed to run the logical circuit

7

3. RESULTS

Algorithm 1 Estimating the required number of rounds of magic state distil-
lation and the corresponding distances of the concatenated codes

1: Input: ε, pin, pout, pg(= pin/10)
2: d← empty list []
3: p← pout
4: i← 0
5: repeat
6: i← i + 1
7: pi ← p

8: Find minimum di such that 192di(100pg)
di+1

2 < εpi
1+ε

9: p← 3
√

pi/(35(1 + ε))
10: d.append(di)
11: until p > pin
12: Output: d = [d1, . . . , di]

(under “Parameters for the main circuit”), as well as the additional overhead
introduced by the need of state distillation in the fault-tolerant layer (under “Pa-
rameters for distillation”). Finally we display the total cost in terms of surface
code cycles, the corresponding security parameter s and the total wall time (in
years) required to break the scheme (under “Costs”). The physical error rate per
gate pg is assumed to be of the order of 10−5, a extremely optimistic number
considered today’s technology.

3.1 Hash functions - SHA-256 and SHA3

We first analyze 2 hash functions: SHA-256 and SHA3. Our results are summa-
rized in Table 1 and Table 2, and are in accordance with [20]. The T -optimized
logical circuits are taken from [20].

3.2 Symmetric ciphers - AES-128, AES-192 and AES-256

In this subsection we analyze 3 symmetric ciphers, namely AES-128, AES-192
and AES-256, respectively. The T -optimized logical circuits are taken from [21].

3.3 Intrinsic cost of Grover’s algorithm with trivial oracles - lower
bounds

In the ideal case (no error correction overhead), Grover’s algorithm offers a
quadratic speedup over classical searching. However, when the overhead intro-
duced by fault-tolerance is taken into account, an additional polynomial overhead
is introduced in Grover. Namely, Θ(2k/2) Grover iterations cost ≈ kv2k/2 logical
qubit cycles for some real v independent of k. Then an adversary who is willing

8

3. RESULTS

Parameters for the main circuit

T-count 1.27× 1044

T-depth 3.76× 1043

Logical qubits 2402
Surface code distance 43
Physical qubits 1.39× 107

Parameters for distillation

Logical qubits 3600
Surface code distance(s) [33, 13, 7]
Magic state factories in parallel 1
States produced per factory 4
Physical qubits 5.51× 105

Costs

Surface code cycles 153.8
Total cost (security parameter) 166.36
Total walltime 1.26× 1032 years

Table 1. SHA-256

Parameters for the main circuit

T-count 2.71× 1044

T-depth 2.31× 1041

Logical qubits 3200
Surface code distance 44
Physical qubits 1.94× 107

Parameters for distillation

Logical qubits 3600
Surface code distance(s) [33, 13, 7]
Magic state factories in parallel 294
States produced per factory 4
Physical qubits 1.62× 108

Costs

Surface code cycles 146.46
Total cost (security parameter) 166.47
Total walltime 7.75× 1029 years

Table 2. SHA3

to execute an algorithm of cost 2C can use Grover’s algorithm to search a space
of k bits provided that

k/2 + v log2(k) ≤ C. (2)

We define the overhead of the circuit as v and the advantage of the circuit
as k/C. Note that if we view k as a function of v and C then for any fixed v
we have limC→∞ k(v, C)/C = 2, i.e. asymptotically, Grover’s algorithm provides
a quadratic advantage over classical search. However, here we are interested in
non-asymptotic advantages.

9

3. RESULTS

Parameters for the main circuit

T-count 9.23× 1025

T-depth 1.47× 1024

Logical qubits 2953
Surface code distance 19
Physical qubits 3.33× 106

Parameters for distillation

Logical qubits 240
Surface code distance(s) [19, 9]
Magic state factories in parallel 21
States produced per factory 3
Physical qubits 1.28× 106

Costs

Surface code cycles 88.41
Total cost (security parameter) 101.37
Total walltime 2.61× 1012 years

Table 3. AES-128

Parameters for the main circuit

T-count 4.50× 1035

T-depth 7.46× 1033

Logical qubits 4449
Surface code distance 28
Physical qubits 1.09× 107

Parameters for distillation

Logical qubits 3600
Surface code distance(s) [27, 11, 5]
Magic state factories in parallel 21
States produced per factory 3
Physical qubits 5.91× 106

Costs

Surface code cycles 121.22
Total cost (security parameter) 137.51
Total walltime 1.97× 1022 years

Table 4. AES-192

In the following we use our automated framework to compute the overhead
introduced solely by the need of error correcting the Grover’s algorithm with a
searching space of size 2k, considering a trivial oracle (i.e., the identity gate).
We vary the key size k, ranging from 56 bits all the way to 512 bits, as well as
the physical error rate per gate pg, ranging from 10−3 all the way down to 10−7,
respectively. Note that a physical error rate of 10−4 is considered optimistic with
today’s technology. We tabulate the security parameter for each combination of
key size/physical error rate. In the ideal case (no error correction needed), the

10

3. RESULTS

Parameters for the main circuit

T-count 2.42× 1045

T-depth 7.00× 1043

Logical qubits 6681
Surface code distance 37
Physical qubits 2.86× 107

Parameters for distillation

Logical qubits 3600
Surface code distance(s) [33, 13, 7]
Magic state factories in parallel 9
States produced per factory 4
Physical qubits 4.96× 106

Costs

Surface code cycles 154.66
Total cost (security parameter) 169.91
Total walltime 2.29× 1032 years

Table 5. AES-256

security parameter is k/2, i.e. half the size of the key. Our results are summarized
in Table 6.

k(bits)/pg 10−3 10−4 10−5 10−6 10−7

56 59.88 55.61 55.32
112 90.04 88.84 85.78 85.37 84.01
128 98.05 97.36 94.16 93.63 92.88
168 119.04 118.41 117.43 114.6 114.18
192 134.74 130.72 130.2 0 126.99 126.16
256 167.25 163.51 163.48 162.08 159.61
384 231.72 231.47 228.62 228.18 227.35
512 296.44 296.83 293.41 292.1 292.7

Table 6. Security parameter as a function of the key size and physical error rate for
Grover’s algorithm with a trivial oracle. Here k denotes the key size (or, equivalently,
2k is the size of the searching space) and pg represents the physical error rate per gate.

One can easily observe that k = 56 represents the “sweet spot”, i.e. the region
where a quantum computer ceases to offer any advantage whatsoever compared
to a classical brute force searching on current silicon-based computers. In fact,
if the physical error rate per gate is 10−3 or larger, the overhead introduced
by error correcting the Grover’s algorithm itself is greater than any advantage
whatsoever. We conclude that for small key sizes such as k = 56 and lower, it
is more advantageous to use classical brute force searching than employing a
fault-tolerant quantum computer.

11

4. FUTURE DIRECTIONS

The results in Table 6 represent relatively strong lower bounds for the secu-
rity parameter of any symmetric cryptographic primitive against a fault-tolerant
quantum adversary, as the latter have non-trivial oracles which introduce addi-
tional overhead. The only assumption we made is the use of a surface code as
the primary means of quantum error correction. We cannot say for certainty
that topological error correction is the best scheme, perhaps in the future other
more resource-efficient schemes will be discovered. However, as of today, the
surface code is by far the most promising approach to achieving large scale
fault-tolerance.

4 Future directions

In the near future we aim to extend our analysis to a variety of asymmetric
(public key) cryptographic schemes, most notably to RSA with different mod-
ules and Elliptic Curve Cryptography over various curves, as well as to digital
signature schemes over those primitives.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997), http://link.aip.org/link/?SMJ/26/1484/1

2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79, 325–328 (Jul 1997), http://link.aps.org/doi/10.1103/

PhysRevLett.79.325

3. Jordan, S.: Quantum Algorithm Zoo (February 2016), http://math.nist.gov/

quantum/zoo/

4. Boneh, D., Lipton, R.J.: Quantum Cryptanalysis of Hidden Linear Functions. In:
Coppersmith, D. (ed.) Advances in Cryptology - CRYPTO’95, pp. 424–437. No.
963 in Lecture Notes in Computer Science, Springer Berlin Heidelberg (Aug 1995)

5. Agency, U.S.N.S.: NSA Suite B Cryptography - NSA/CSS. NSA website (August
2015), https://www.nsa.gov/ia/programs/suiteb_cryptography/

6. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology Internal Report 8105 (February 2016)

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4-5), 493–505 (1998), http://dx.doi.org/10.1002/

(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P

8. Gilles, B., Peter, H., Michele, M., Alain, T.: Quantum amplitude amplification
and estimation. Quantum Computation and Quantum Information, Samuel J.
Lomonaco, Jr. (editor), AMS Contemporary Mathematics (305), 53–74 (2002),
e-print arXiv:quant-ph/0005055

9. Lenstra, A.K.: Handbook of Information Security, chap. Key Lengths. Wiley (2004)

10. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14(4), 255–293 (Aug 2001)

12

http://link.aip.org/link/?SMJ/26/1484/1
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://link.aps.org/doi/10.1103/PhysRevLett.79.325
http://math.nist.gov/quantum/zoo/
http://math.nist.gov/quantum/zoo/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P

4. FUTURE DIRECTIONS

11. Blaze, M., Diffie, W., Rivest, R., Schneier, B., Shimomura, T., Thompson, E.,
Weiner, M.: Minimal key lengths for symmetric ciphers to provide adequate com-
mercial security. Tech. rep., An ad hoc group of cryptographers and computer
scientists (1996)

12. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: To-
wards practical large-scale quantum computation. Physical Review A 86(3), 032324
(Sep 2012), http://link.aps.org/doi/10.1103/PhysRevA.86.032324

13. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of Clif-
ford+T circuits via matroid partitioning. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 33(10), 1476–1489 (Oct 2014)

14. Fowler, A.G., Whiteside, A.C., Hollenberg, L.C.L.: Towards practical classical pro-
cessing for the surface code: Timing analysis. Physical Review A 86(4), 042313 (Oct
2012), http://link.aps.org/doi/10.1103/PhysRevA.86.042313

15. Fowler, A.G., Whiteside, A.C., Hollenberg, L.C.L.: Towards Practical Classical
Processing for the Surface Code. Physical Review Letters 108(18), 180501 (May
2012), http://link.aps.org/doi/10.1103/PhysRevLett.108.180501

16. Fowler, A.G.: Minimum weight perfect matching of fault-tolerant topological quan-
tum error correction in average $O(1)$ parallel time. arXiv:1307.1740 [quant-ph]
(Jul 2013), http://arxiv.org/abs/1307.1740, arXiv: 1307.1740

17. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates
and noisy ancillas. Phys. Rev. A 71, 022316 (Feb 2005), http://link.aps.org/
doi/10.1103/PhysRevA.71.022316

18. Fowler, A.G., Devitt, S.J., Jones, C.: Surface code implementation of block code
state distillation. Scientific Reports 3, 1939 EP – (06 2013), http://dx.doi.org/
10.1038/srep01939

19. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: To-
wards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (Sep
2012), http://link.aps.org/doi/10.1103/PhysRevA.86.032324

20. Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3 (2016),
arXiv:1603.09383v1

21. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s al-
gorithm to AES: quantum resource estimates, e-print arXiv:1512.04965 [quant-ph]

13

http://link.aps.org/doi/10.1103/PhysRevA.86.032324
http://link.aps.org/doi/10.1103/PhysRevA.86.042313
http://link.aps.org/doi/10.1103/PhysRevLett.108.180501
http://arxiv.org/abs/1307.1740
http://link.aps.org/doi/10.1103/PhysRevA.71.022316
http://link.aps.org/doi/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1038/srep01939
http://dx.doi.org/10.1038/srep01939
http://link.aps.org/doi/10.1103/PhysRevA.86.032324

	report_feb_2017.pdf
	A resource estimation framework for quantum attacks against cryptographic functions GRI quantum risk assessment report Sep. 2016 - Feb. 2017
	Introduction
	Methodology
	Overview
	Cost metric for quantum computation
	Fault-tolerant cost

	Results
	Hash functions - SHA-256 and SHA3
	Symmetric ciphers - AES-128, AES-192 and AES-256
	Intrinsic cost of Grover's algorithm with trivial oracles - lower bounds

	Future directions

