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Abstract. We extend our analysis of the security of several symmetric-
key cryptographic functions and hash functions against an attack from
a full-scale fault-tolerant quantum computer. We investigate the advan-
tages provided by parallelizing Grover’s algorithm and compute the secu-
rity parameters, wall-time and physical footprint as a function of number
of processors for each cryptographic primitive, assuming a fault-tolerant
implementation on a surface code architecture, as a function of various
physical error rates ranging from 10−3 to 10−7.

1 Introduction

Symmetric cryptography is a fundamental pillar of modern cryptography. It in-
cludes symmetric-key encryption, where a shared secret key is used for both
encryption and decryption. It also includes cryptographic hash functions, which
map arbitrarily long strings to strings of a fixed finite length. In contrast to
asymmetric schemes (or public-key schemes) based on factoring or solving the
discrete logarithm problem and which are completely broken by a quantum ad-
versary via Shor’s algorithm [1], symmetric schemes and hash functions are less
vulnerable to quantum attacks. The best known quantum attacks against them
are based on Grover’s quantum search algorithm [2], which offers a quadratic
speedup compared to classical brute force searching. Given a search space of
size N , Grover’s algorithm finds, with high probability, an element x for which
a certain property such as f(x) = 1 holds, for some function f we know how
to evaluate (assuming such a solution exists). The algorithm evaluates f a total
of O(

√
N) times. It applies a simple operation in between the evaluations of f ,

so the O(
√
N) evaluations of f account for most of the complexity. In contrast,

any classical algorithm that evaluates f in a similar “black-box” way requires
on the order of N evaluations of f to find such an element.



2. METHODOLOGY

In [3] we analyzed the security of symmetric schemes and hash functions
against quantum adversaries. In the current report we improve the analysis by
studying the effects of parallelization on Grover’s searching algorithm, down to
the fault-tolerant layer. Naively, one might hope that K quantum computers
(or quantum “processors”, as we will call them later in the paper) running in
parallel reduce the number of steps in Grover down to O(

√
N)/K steps, similar

to the classical case of distributing a search space across K classical processors.
However Grover’s algorithm does not parallelize so well, and the required number
of steps for parallel quantum searching is of the order O(

√
N/K) [4]. This is

a factor of
√
K larger than O(

√
N)/K . As show in [4], the optimal way of

parallelizing Grover’s algorithm is to partition the search space into N/K parts,
and to perform independent quantum searches on each part.

In the current report we investigate the effects of parallelization on various
parameters, such as circuit physical footprint (number of qubits), total running
time and security parameter. As in our previous report, we assume a surface-
code based fault-tolerant architecture [5], using Reed-Muller distillation schemes
[6]. For each scheme we vary the possible physical error rates per gate from 10−4

to 10−7. We believe that this range of physical error rates is wide enough to
cover both first generation quantum computers as well as more advanced future
machines. We also believe that it is highly unlikely that the physical error rates
will be reduced to less than 10−7.

2 Methodology

The methodology, sketched in Fig. 1 and Fig. 2, follows the same lines as the one
described in detail in our earlier report [3]. We refer the reader to the Ref. [3] for
more details. All of our results were produced via our Python resource estimate
software toolkit.

For each cryptographic primitive, we display four plots, in the following order:

1. We plot the total number of surface code cycles per CPU (where a CPU
is a quantum computer capable of executing a single instance of Grover’s
quantum search algorithm) as a function of the number of CPUs. We directly
tie the quantum security parameter to the total number of surface code cycles
(see [3] for more details). We also add to the plot the theoretical lower bound
achievable by quantum search in the cases of: a) considering the oracle a black
box of unit cost (lower line), and b) considering the oracle as composed of
ideal quantum gates, each of unit cost (upper line). Note that the difference
between b) and a) represents the intrinsic cost of logical overhead (i.e. the
overhead introduced by treating the oracle as a logical circuit and not a
blackbox), whereas the difference between the upper lines and b) represents
the intrinsic cost introduced by the fault-tolerant layer.

2. We plot the total wall-time per CPU (i.e. how long will the whole computa-
tion take on a parallel quantum architecture) as a function of the number of
CPUs. The horizontal dashed line represents the one-year time line, i.e. the
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Run Grover's algorithm

Generate and optimize reversible circuits

Classical query model

Logical layer

Embed reversible circuits into error

correcting codes; estimate resources.

Fault tolerant layer

Determine physical resources (time, 

qubits, code cycles).

Physical layer

Fig. 1. Analyzing an attack against a symmetric cryptographic function with a fault-
tolerant quantum adversary. Our resource estimation methodology takes into account
several of the layers between the high level description of an algorithm and the physi-
cal hardware required for its execution. Our approach is modular should assumptions
about any of these layers change, and hence it allows one to calculate the impact of
improvements in any particular layer.

X coordinate of the intersection point between the “Total time per CPU”
line and the one-year time line provides the number of processors required
to break the system within one year (in log2 units).

3. We plot the total physical footprint (number of qubits) per CPU, as a func-
tion of the number of CPUs.

4. Finally we plot the total physical footprint (number of qubits) of all quantum
search machines (CPUs) running in parallel.

In the following sections we proceed to analyze symmetric ciphers (AES,
Sec. 3), hash functions (SHA-256, SHA3-256, Sec. 4, Bitcoin’s hash function,
Sec. 5), and finally the minimal resources required for running Grover’s algorithm
with a trivial oracle 6 (e.g. the identity gate) on search spaces of various sizes.
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Fig. 2. Grover searching with an oracle for f : {0, 1}k → {0, 1}k. The algorithm makes
bπ
4

2N/2c calls to G, the Grover iteration, or, if parallelized on K processors, bπ
4

2N/(2K)c
calls to G. The Grover iteration has two subroutines. The first, Ug, implements the
predicate g : {0, 1}k → {0, 1} that maps x to 1 if and only if f(x) = y. Each call to
Ug involves two calls to a reversible implementation of f and one call to a comparison
circuit that checks whether f(x) = y.

4



3. SYMMETRIC CIPHERS

3 Symmetric ciphers

Below we analyze the effect of parallelization on the AES family of symmetric
ciphers. We used the highly optimized logical circuits produced in [7].

3.1 AES-128
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Fig. 3. AES-128 block cipher. Required surface clock cycles per processor, as a function
of the number of processors (log2 scale). The bottom brown line (theoretical lower
bound, black box) represents the minimal number of queries required by Grover’s
algorithm, the cost function being the total number of queries to a black-box oracle,
each query assumed to have unit cost, and a completely error-free circuit. The purple
line (ideal grover, non-black-box) takes into consideration the structure of the oracle,
the cost function being the total number of gates in the circuit, each gate having unit
cost; the quantum circuit is assumed error-free as well. The curves above the purple
line show the overhead introduced by fault tolerance (in terms of required surface code
cycles, each surface code cycle assumed to have unit cost). More optimization at the
logical layer will shift the purple line down, whereas more optimization at the fault-
tolerant layer will move the upper curves closer to the purple line. Similar remarks to
the above hold for the remaining plots in this manuscript.

For example, the plots in Fig. 3 tells us that if we have 250 quantum computers
running Grover’s algorithm in parallel, with no physical errors, then it would
take about 263 gate calls (where the purple line intersects the vertical line at 50),
where we assume each gate to have unit cost. Still with no errors, a trivial cost for
implementing the cryptographic function (oracle) would bring the cost down to
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about 238 oracle calls. Keeping the actual function implementation, but adding
the fault-tolerant layer with a physical error rate of 10−7 (with appropriate
assumptions and using state-of-the-art quantum error correction) pushes the cost
up to around 276 surface code cycles (where now each code cycle is assumed to
have unit cost). Similar remarks hold for the remaining plots in this manuscript.

0 20 40 60 80 100 120
CPUs (log2)

10

20

30

40

50

60

70

To
ta
l t
im

e 
pe

r C
PU

 (s
ec
on

ds
, l
og

2)

AES-128
p_g=1e-4
p_g=1e-5
p_g=1e-6
p_g=1e-7
1 year

Fig. 4. AES-128 block cipher. Required time per processor, as a function of the number
of processors (log2 scale). The horizontal dotted line indicates one year. The X-axis is
deliberately extended to show the necessary number of CPUs for a total time of one
year. Thus the figure shows that it would take, with the stated assumptions, over 280

parallel quantum searches to break AES-128 in a year. Similar remarks to the above
hold for the remaining plots in this manuscript.
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Fig. 5. AES-128 block cipher. Physical footprint (physical qubits) per processor, as
a function of the number of processors (log2 scale). Note that in some ranges of the
plot the total physical footprint increases slightly with the number of processors, which
may seem counter-intuitive. This happens due to the fact that with more processors
the required code distances decrease, and in some instances one can pipeline more dis-
tilleries in parallel into the surface code, which in effect causes an increase in the overall
physical footprint. Note that the total time per CPU is monotonically decreasing, as
parallelizing distilleries does not increase the wall time. For more details see [8]. Similar
remarks to the above hold for the remaining plots in this manuscript.
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Fig. 6. AES-128 block cipher. Total physical footprint (physical qubits), as a function
of the number of processors (log2 scale). Note that the qubits are not correlated across
processors.

3.2 AES-192
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Fig. 7. AES-192 block cipher. Required surface clock cycles per processor, as a function
of the number of processors (log2 scale).
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Fig. 8. AES-192 block cipher. Required time per processor, as a function of the number
of processors (log2 scale).
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Fig. 9. AES-192 block cipher. Physical footprint (physical qubits) per processor, as a
function of the number of processors (log2 scale).
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Fig. 10. AES-192 block cipher. Total physical footprint (physical qubits), as a function
of the number of processors (log2 scale). Note that the qubits are not correlated across
processors.

3.3 AES-256
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Fig. 11. AES-256 block cipher. Required surface clock cycles per processor, as a func-
tion of the number of processors (log2 scale).
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Fig. 12. AES-256 block cipher. Required time per processor, as a function of the num-
ber of processors (log2 scale).
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Fig. 13. AES-256 block cipher. Physical footprint (physical qubits) per processor, as
a function of the number of processors (log2 scale).
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Fig. 14. AES-256 block cipher. Total physical footprint (physical qubits), as a function
of the number of processors (log2 scale). Note that the qubits are not correlated across
processors.

4 Hash functions

In this section we study the effect of Grover parallelization on the SHA-256[9]
snd SHA3-256[10] family of hash functions. We used the highly optimized logical
circuits produced in [8].
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4.1 SHA-256
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Fig. 15. SHA-256 cryptographic hash function. Required surface clock cycles per pro-
cessor, as a function of the number of processors (log2 scale).
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Fig. 16. SHA-256 cryptographic hash function. Required time per processor, as a func-
tion of the number of processors (log2 scale).
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Fig. 17. SHA-256 cryptographic hash function. Physical footprint (physical qubits)
per processor, as a function of the number of processors (log2 scale).
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Fig. 18. SHA-256 cryptographic hash function. Total physical footprint (physical
qubits), as a function of the number of processors (log2 scale). Note that the qubits
are not correlated across processors.
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4.2 SHA3-256
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Fig. 19. SHA3-256 cryptographic hash function. Required surface clock cycles per pro-
cessor, as a function of the number of processors (log2 scale).
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Fig. 20. SHA3-256 cryptographic hash function. Required time per processor, as a
function of the number of processors (log2 scale).
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Fig. 21. SHA3-256 cryptographic hash function. Physical footprint (physical qubits)
per processor, as a function of the number of processors (log2 scale).
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Fig. 22. SHA3-256 cryptographic hash function. Total physical footprint (physical
qubits), as a function of the number of processors (log2 scale). Note that the qubits
are not correlated across processors.
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5 Bitcoin

In this section we analyze the security of Bitcoin’s [11] proof-of-work protocol,
which is based on finding a hash1 pre-image which that starts with a certain
number of zeros. The latter is dynamically adjusted by the protocol so that the
problem is on average solved by the whole network in 10 minutes. Currently,
it takes around 272 operations for finding a desired hash pre-image successfully.
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Fig. 23. Bitcoin’s cryptographic hash function H(x) := SHA-256(SHA-256(x)). Re-
quired surface clock cycles per processor, as a function of the number of processors
(log2 scale).

1 The hash function being used by the protocol is H(x) := SHA-256(SHA-256(x).
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Fig. 24. Bitcoin’s cryptographic hash function H(x) := SHA-256(SHA-256(x)). Re-
quired time per processor, as a function of the number of processors (log2 scale).
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Fig. 25. Bitcoin’s cryptographic hash function H(x) := SHA-256(SHA-256(x)). Physi-
cal footprint (physical qubits) per processor, as a function of the number of processors
(log2 scale).
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Fig. 26. Bitcoin’s cryptographic hash function H(x) := SHA-256(SHA-256(x)). Total
physical footprint (physical qubits), as a function of the number of processors (log2

scale). Note that the qubits are not correlated across processors.

6 Intrinsic cost of parallelized Grover’s algorithm

More efficient quantum implementations of AES and SHA imply more efficient
cryptanalysis. In this section, we aim to bound how much further optimized im-
plementations of these cryptographic functions could help. We do so by assuming
a trivial cost of 1 for each function evaluation.
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6.1 Searching space of size 256
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Fig. 27. Running Grover with a trivial oracle, for a searching space of size 256. Required
surface clock cycles per processor, as a function of the number of processors (log2 scale).
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Fig. 28. Running Grover with a trivial oracle, for a searching space of size 256. Required
time per processor, as a function of the number of processors (log2 scale). The dotted
horizontal line indicates one year.

20



6. INTRINSIC COST OF PARALLELIZED GROVER’S ALGORITHM

0 5 10 15 20 25 30
CPUs (log2)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta
l p

hy
sic

al
 fo

ot
pr
in
t p

er
 C
PU

1e6 Minimal Grover 56 bits
p_g=1e-4
p_g=1e-5
p_g=1e-6
p_g=1e-7

Fig. 29. Running Grover with a trivial oracle, for a searching space of size 256. Physical
footprint (physical qubits) per processor, as a function of the number of processors (log2

scale).
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Fig. 30. Running Grover with a trivial oracle, for a searching space of size 256. Total
physical footprint (physical qubits), as a function of the number of processors (log2

scale). Note that the qubits are not correlated across processors.
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6.2 Searching space of size 264
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Fig. 31. Running Grover with a trivial oracle, for a searching space of size 264. Required
surface clock cycles per processor, as a function of the number of processors (log2 scale).
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Fig. 32. Running Grover with a trivial oracle, for a searching space of size 264. Required
time per processor, as a function of the number of processors (log2 scale).
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Fig. 33. Running Grover with a trivial oracle, for a searching space of size 264. Physical
footprint (physical qubits) per processor, as a function of the number of processors (log2

scale).
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Fig. 34. Running Grover with a trivial oracle, for a searching space of size 264. Total
physical footprint (physical qubits), as a function of the number of processors (log2

scale). Note that the qubits are not correlated across processors.
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6.3 Searching space of size 2128
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Fig. 35. Running Grover with a trivial oracle, for a searching space of size 2128. Re-
quired surface clock cycles per processor, as a function of the number of processors
(log2 scale).
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Fig. 36. Running Grover with a trivial oracle, for a searching space of size 2128. Re-
quired time per processor, as a function of the number of processors (log2 scale).
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Fig. 37. Running Grover with a trivial oracle, for a searching space of size 2128. Physical
footprint (physical qubits) per processor, as a function of the number of processors (log2

scale).
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Fig. 38. Running Grover with a trivial oracle, for a searching space of size 2128. Total
physical footprint (physical qubits), as a function of the number of processors (log2

scale). Note that the qubits are not correlated across processors.

25



6. INTRINSIC COST OF PARALLELIZED GROVER’S ALGORITHM

6.4 Searching space of size 2256

0 10 20 30 40 50 60
CPUs (log2)

100

110

120

130

140

150

160

To
ta
l s
ur
fa
ce
 c
od
e 
cy
cle
s (
lo
g2
) p
er
 C
PU

Minimal Grover 256 bits

p_g=1e-4
p_g=1e-5
p_g=1e-6
p_g=1e-7
Ideal Grover (non-black-box)
Theoretical lower bound (black-box)

Fig. 39. Running Grover with a trivial oracle, for a searching space of size 2256. Re-
quired surface clock cycles per processor, as a function of the number of processors
(log2 scale).
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Fig. 40. Running Grover with a trivial oracle, for a searching space of size 2256. Re-
quired time per processor, as a function of the number of processors (log2 scale).
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Fig. 41. Running Grover with a trivial oracle, for a searching space of size 2256. Physical
footprint (physical qubits) per processor, as a function of the number of processors (log2

scale).
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Fig. 42. Running Grover with a trivial oracle, for a searching space of size 2256. Total
physical footprint (physical qubits), as a function of the number of processors (log2

scale). Note that the qubits are not correlated across processors.
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7 Conclusions and Discussion

We analyzed the security of several widely used symmetric ciphers and hash
functions against parallelized quantum adversaries. We computed the security
parameter, wall-time and physical footprint for each cryptographic primitive.
Our attack model was based on a brute force searching via a parallelized version
of Grover’s algorithm, assuming a surface-code fault-tolerant architecture.

It is worth noting that throughout we are assuming that brute-force search
where we treat the cryptographic function as a black-box is essentially the opti-
mal attack against SHA and AES, which is currently believed to be the case.

Some symmetric key algorithms are susceptible in a model that permits “su-
perposition attacks” [12]. In most realistic instances, these attacks are not prac-
tical, however they do shed light on the limitations of certain security proof
methods in a quantum context, and remind us that we shouldn’t take for granted
that non-trivial attacks on symmetric key cryptography may be possible. For ex-
ample, very recently, there have been several cryptanalysis results [13] and [14]
that attempt to reduce breaking some symmetric algorithms to solving a system
of non-linear equations. Solving these non-linear equations is then attacked us-
ing a modified version of the quantum linear equation solver algorithm [15]. The
results are heavily dependent on the condition number of the non-linear system,
which turns to be hard to compute (it is not known for most ciphers and hash
functions such as AES or SHA). Provided the condition number is relatively
small, then one may get an advantage compared to brute-force Grover search.
However at this time it is not clear whether this is indeed the case, and we do
not have large-scale quantum computers to experiment with.
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