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Abstract. We analyze the security of asymmetric-key cryptographic
primitives against an attack from a full-scale fault-tolerant quantum
computer. In particular, we consider RSA and several discrete logarithm
schemes based on elliptic curves, and provide benchmark estimates of
the resources needed to break these schemes.

1 Introduction

Public-key cryptography, or asymmetric cryptography, is the branch of cryptog-
raphy in which secrecy or authentication is achieved via using two types of keys:
a private key, which is only known to the party that wishes to receive encrypted
messages or to authenticate her/him self, and a public key, which is publicly
available. Whereas symmetric key cryptography (the branch of cryptography in
which the parties share a common secret key) is 4000 years old, public-key cryp-
tography, on the other hand, is relatively new. The first academic proposal for
public-key encryption scheme dates back to 1976, when Whitfield Diffie, Mar-
tin Hellman and Ralph Merkle [1,2] proposed the first public-key cryptographic
scheme1.

The basic idea of public-key cryptography is relatively simple. Any partic-
ipant has the ability of generating efficiently (computationally easy) a pair of
private/public keys. The private key is related to the public key and vice-versa.
However, the scheme is designed such that recovering the private key from the
public key alone is requires solving a computationally mathematical problem
believed to be intractable (technically, the running time of any algorithm that

1 In 1997, after the declassification of a series of British government documents, it
was revealed that James Ellis, Clifford Cocks and Graham Williamson from the
United Kingdom’s Government Communications Headquarters (GCHQ) discovered
the basics of public-key cryptography 4 years earlier, in 1972, although it is unclear
if the government realized the profound implication such schemes would have.
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solves the problem is believed to be super-polynomial or exponential). When
some participant, Alice, wants to send an encrypted message2 to some other
participant, Bob, Alice must use Bob’s public key to encrypt the information.
To decrypt, Bob uses his private key (which is related to his public key). For
authentication (digital signature) Alice is “signing” a message with her private
key, then the rest of the world can verify using her public key that indeed Alice
(and no one else, since that would imply that an adversary has solved a com-
putation problem believed to be intractable) could have potentially signed the
message.

The two most important types of computationally hard problems used in
public-key cryptography are based on i) factoring large numbers, and ii) solv-
ing the discrete logarithm problem in a large Abelian group3. The hardness of
factoring constitutes the basics of the RSA public-key encryption scheme [3],
whereas the hardness of solving the discrete log problem is the foundation of
several cryptographic schemes such as the Diffie-Helman key exchange [1] and
variants of it such as Elliptic Curve cryptography (ECC) [4].

Quantum computing represents an entirely new model of computation, which
harnesses the fundamental laws of quantum mechanics to perform computations.
A number of quantum algorithms promise significant asymptotic speedups com-
pared with their classical counterparts [5,6,7]. While most fields of research will
be unaffected by these algorithms until large quantum computers are built, cryp-
tography is affected by the possibility of these algorithms being run at any time
in the future. The hardness assumptions underlying the public key cryptosys-
tems currently in use – those related to factoring and variants of the discrete
logarithm problem – are violated by quantum adversaries. Quantum Fourier sam-
pling techniques break these cryptosystems in polynomial time [5,8]. As a result
these cryptosystems can no longer be considered secure, and ultimately they
will have to be replaced. Some standards bodies have already initiated activities
toward transitioning to new public key cryptographic primitives [9,10].

In this report we investigate the temporal and spatial resources necessary to
attack the RSA scheme and various ECC schemes. Such resource estimates are
a central part of estimating when a large scale quantum computer will break
ICT systems relying on RSA and ECC, which relate to the urgency of preparing
public key primitives designed to resist quantum attacks.

2 Typically, in practice, the “message” is a random string that will be used in a
symmetric key algorithm.

3 Solving the discrete logarithm problem in a large Abelian group G reduces to the
following. Given an element of a group, call it g, of the form g = bk, where b is
another known element of the same group and k is an unknown integer, the problem
is to find k.
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2 Brief description of RSA and ECC

2.1 The RSA scheme

We briefly describe below the RSA encryption scheme, namely depict the Key
Generation algorithm, the Encryption algorithm and the Decryption algorithm.
For more details the interested reader can consult [4].

We start with the key generation algorithm.
RSA Key Generation

1. Choose at random two large prime numbers p and q.
2. Compute N = pq.
3. Compute the Euler function Φ(N) := (p− 1)(q − 1).
4. Choose e ∈ {1, 2, . . . , Φ(N)− 1} such that

gcd(e, Φ(n)) = 1.

5. Compute the private key

kpr = e−1 mod Φ(N).

6. The public key is the tuple

kpub = (N, e).

Next we describe the Encryption algorithm.
RSA Encryption
Given the public key kpub = (N, e) and the plaintext x, the encrypted version is

Enc(x) := xe mod N.

Here we assume that x ∈ ZN := {0, 1, . . . N − 1}, the ring of integers modulo N .
Finally we present the Decryption algorithm.

RSA Decryption
Given the private key kpriv and a ciphertext y = Enc(x) encrypted with the
corresponding public key kpub, the decryption of y is obtained by

Dec(y) := ykpriv mod N.

Commonly the RSA scheme is often abbreviated as RSA-n, where n =
log2(N) is the size in bits of N , e.g. RSA-1024, RSA-2048 etc.

2.2 The ECC scheme

As mentioned before, the ECC public-key system is based on the hardness of
solving the discrete logarithm problem over an Abelian group G, the latter gen-
erated geometrically from an elliptic curve as we describe in the following.

3



2. BRIEF DESCRIPTION OF RSA AND ECC

An elliptic curve E over the real numbers is the collection of points

E =
{

(x, y)|y = x3 + ax+ b with a, b ∈ R, 4a3 + 27b2 6= 0
}
. (1)

The condition 4a3 + 27b2 6= 0 guarantees that the curve is non-singular, i.e. that
the equation x3 + ax+ b has no repeated roots.

Point addition
It can be shown that any line passing through two arbitrary points P,Q ∈ E
intersects E once and only once more in a point R′ ∈ E. The result of the addition
operation P + Q is then defined as the point R obtained from the reflection of
R′ about the x axis, see Fig. 1.
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Fig. 1. Adding two different points P and Q on the elliptic curve y = x3 − 2x + 1.

Point doubling
If P and Q coincide, then the addition operation P +P = 2P (often called point
doubling) is defined by drawing a line tangent to P which intersects E at R′,
followed by mirroring R′ about the x axis to obtain R = P +P = 2P , see Fig. 2.

Associated group
It now follows that the collection of points on an elliptic curve E together with
a special point O chosen as the neutral element, called the point at infinity,
form an Abelian group G. Hence every elliptic curve E uniquely determine an
associated Abelian group G, often called the elliptic-curve group of E.
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Fig. 2. Point doubling 2P on the elliptic curve y = x3 − 2x + 1.

Elliptic curve point addition and multiplication over Zp

For cryptographic applications, the elliptic curve E is defined over some prime4

finite field Zp (instead of real numbers), where p is a prime, and the associated
elliptic-curve group is

G =
{

(x, y)|y = x3 + ax+ b mod p, with a, b ∈ Zp, 4a
3 + 27b2 6= 0 mod p

}
∪{O}.

(2)
Given two points P = (x1, y1) and Q = (x2, y2) on E, then the result of the
addition P +Q is the point R = P +Q = (x3, y3) with coordinates

x3 := m2 − x1 − x2 mod p

y3 := m(x1 − x3)− y1 mod p, (3)

where m := (y2 − y1)(x2 − x1)−1 mod p for P 6= Q (point addition) or m :=
(3x21 + a)(2y1)−1 mod p for P = Q (point doubling).
Hasse’s bound and the security of ECC over prime finite fields
The size |G| of the associated group G determines the security of the ECC scheme
over the prime field Zp, quantitatively given by Hasse’s bound

p+ 1− 2
√
p 6 |G| 6 p+ 1 + 2

√
p. (4)

The security of ECC schemes is based on the hardness of finding discrete
logarithms in the elliptic-curve group G, namely given a point R = rP = P +

4 Elliptic curves can be constructed over arbitrary finite fields, in particular Galois
fields GF (2m), but non-prime fields introduce additional complications, which, for
the sake of simplicity, we avoid by restricting our analysis to prime fields.
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P + . . .+P (r times), with r 6 |G|, finding r is assumed to be a computationally
hard problem.
ECC Key exchange
The key exchange algorithm over elliptic curves is a typical Diffie-Hellman scheme
where the Abelian group is the associated elliptic-curve G. Schematically, Alice
and Bob established a shared secret key in the following way.

1. Both Alice and Bob publicly agree in advance on an elliptic curve E and a
point P ∈ E.

2. Alice starts by randomly choosing her private key kApriv = a ∈ {2, 3, . . . , |G|}.
3. Alice computes aP and announces the result (publicly) to Bob.
4. Bob randomly chooses his private key kBpriv = b ∈ {2, 3, . . . , |G|}.
5. Bob computes bP and announces the result (publicly) to Alice.
6. Alice computes a(bP ) = abP , and Bob computes b(aP ) = abP (the last

equality holds because the group G is Abelian), i.e. Alice and Bob established
a shared secret key abP .

Elliptic curves are also frequently used for digital signatures, e.g. in the stan-
dardized ECDSA algorithm (Elliptic Curve Digital Signature Algorithm). The
main advantage of ECC over RSA is the key length: an ECC scheme over a
prime field of size 2160 offers roughly the same security as an RSA-1024 scheme,
whereas an ECC scheme over a prime field of size 2224 offers roughly the same
security as an RSA-2048 scheme.

For more details about ECC the interested reader can consult e.g. [4].

3 Attacking RSA and ECC with a quantum computer

As shown by Peter Shor in 1994[5], both RSA and ECC schemes are vulnerable
against a quantum adversary, e.g. both can be broken in polynomial time on
a quantum computer. Shor’s factoring algorithm is implemented at the logical
layer by the quantum circuit schematically depicted in Fig. 3 A slight variation
of the factoring circuit can be used to break the discrete logarithm over Abelian
groups, as depicted in Fig. 4.

4 Methodology and results

We use the same analysis framework described in our Sep. 2016 - Feb. 2017 GRI
report [11] and depicted schematically in Fig. 5. We assume a surface-code based
fault-tolerant quantum adversary. Our cost metric is based on several assump-
tions, described in detail in Sec. 2.2 of [11] and summarized for completeness
below.

Assumption 1 The resources required for any large quantum computation are
well approximated by the resources required for that computation on a surface
code based quantum computer.
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|0⊗n⟩ n
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a

Fig. 3. Generic Shor’s factoring algorithm, logical layer. The integer a is co-prime to N ,
i.e. gcd(a,N)=1, where N = 2n is the closest power of two (from above) to the number
to be factored. The modular exponentiation part of the circuit is depicted schematically
by the controlled-Ux

a gate. The action of the latter on a computational basis state
|s〉 is defined Ux

a |s〉 = Uax |s〉 = |sax mod N〉. The QFT/QFT−1 box represents the
quantum Fourier transform and its inverse, respectively, on n qubits. The result is
obtained by measuring the top n qubits and post-processing the measurement data.
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Fig. 4. Generic adaptation of Shor’s algorithm for breaking the discrete logarithm prob-
lem over Abelian groups, logical layer. Given the publicly known fixed point P ∈ E
used in the ECC scheme, and given Q guaranteed to be of the form Q = kP for some
integer k, the circuit computes the discrete logarithm of Q in E, i.e. finds k. The mod-
ular exponentiation part of the circuit is depicted schematically by the controlled-Ux

a

(Ux
b ) gate(s). The action of the latter on a computational basis state |s〉 is defined

Ux
a |s〉 = Uax |s〉 = |sax mod N〉. Here N = 2n is the closest power of two (from above)

to the size of the cyclic group generated by the point P . The integers a and b represent
the binary encodings of the points P and Q, respectively. The QFT/QFT−1 box rep-
resents the quantum Fourier transform and its inverse, respectively, on n qubits. The
result is obtained by measuring the top 2n qubits and post-processing the measurement
data.

7



4. METHODOLOGY AND RESULTS

Logical layer

Fault-tolerant layer

Physical layer

Generate and optimize reversible circuits

Embed reversible circuits into error
correcting codes; estimate resources.

Determine physical resources:
time, qubits, code cycles

Fig. 5. Analyzing an attack against a asymmetric cryptographic function with a fault-
tolerant quantum adversary.

Assumption 2 The classical error correction routine for the surface code on
an L×L grid of logical qubits requires an L×L mesh of classical processors (i.e.
Ca = n).

Assumption 3 Each ASIC performs a constant number of operations per sur-
face code cycle.

Assumption 4 The temporal cost of one surface code cycle is our fundamental
unit of time.

Combining Assumptions 1, 2, and 4 we arrive at the following metric for com-
paring the costs of classical and quantum computations.

Cost Metric 1 The cost of a quantum computation involving ` logical qubits
for a duration of σ surface code cycles is equal to ` · σ.

In contrast to our previous analysis on hash function in [11] where we ana-
lyzed brute-force super-polynomial time attacks using Grover searching, Shor’s
quantum algorithm for breaking RSA, and its adaptation for breaking ECC, has
polynomial running time on a quantum computer, and Clifford gates make up
a negligible fraction of the algorithmic cost. In this case, we can safely ignore
the cost of Clifford operations, as they are negligible in contrast to the cost
of implementing the non-Clifford T gate fault-tolerantly (see [11] for more de-
tails). Therefore, in all of our estimations below we will only consider the cost
associated to the T gates in the circuit.
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In all of our analysis summarized below, we optimize for space and wall-
time, i.e. we estimate the minimum time (wall-time) needed to break the listed
cryptographic primitives for a given small sized quantum computer (in terms of
physical qubits). We consider a physical error rate per gate pg = 10−4, considered
optimistic with today’s technology, and optimize over state-of-the-art surface
code configurations to derive the optimized physical cost.

4.1 RSA results

We estimate the resources needed to attack the following public-key schemes
based on factoring large numbers: RSA-768, RSA-1024, RSA-2048 and RSA-
4096. We did a literature search and used the best (as of today) logical circuits
for factoring with a quantum computer, described in [12]. We summarize all our
findings in the tables below. For completeness, for each cryptographic primitive,
we also mention its corresponding classical security parameter (bits of security).

Classical security parameter (bits) 64

RSA-768 cost estimates

T-count 1.27× 1011

T-depth 4.23× 1010

Logical qubits 2290
Physical qubits 1.92× 106

Total wall-time 1.51 hours

Table 1. Benchmark cost of attacking RSA-768 with a fully-scalable fault-tolerant
quantum adversary.

Classical security parameter (bits) 80

RSA-1024 cost estimates

T-count 3.00× 1011

T-depth 1.00× 1011

Logical qubits 2290
Physical qubits 2.56× 106

Total wall-time 3.58 hours

Table 2. Benchmark cost of attacking RSA-1024 with a fully-scalable fault-tolerant
quantum adversary.

4.2 ECC results

We estimate the resources needed to attack the following discrete-log based NIST
standardized ECC schemes: P-160, P-192, P-256 and P-521. Based on an exten-
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Classical security parameter (bits) 112

RSA-2048 cost estimates

T-count 2.48× 1012

T-depth 8.02× 1011

Logical qubits 4338
Physical qubits 6.2× 106

Total wall-time 28.63 hours

Table 3. Benchmark cost of attacking RSA-2048 with a fully-scalable fault-tolerant
quantum adversary.

Classical security parameter (bits) 128

RSA-4096 cost estimates

T-count 1.92× 1013

T-depth 6.21× 1012

Logical qubits 8434
Physical qubits 1.47× 107

Total wall-time 229 hours

Table 4. Benchmark cost of attacking RSA-4096 with a fully-scalable fault-tolerant
quantum adversary.

sive literature search, and our own analysis, we chose to benchmark the optimized
logical circuits from [13]. We summarize all our findings in the tables below.

Classical security parameter (bits) 80

NIST ECC P-160 cost estimates

T-count 2.97× 1011

T-depth 6.93× 1010

Logical qubits 1946
Physical qubits 1.83× 106

Total wall-time 2.48 hours

Table 5. Benchmark cost of attacking the standardized NIST P-160 elliptic curve with
a fully-scalable fault-tolerant quantum adversary.

5 Conclusions and future directions

We estimated the vulnerabilities of typical public-key encryption schemes used
heavily in today’s secure communication landscape, namely RSA and ECC,
against full scale fault-tolerant quantum computers. Our benchmark estimates
are based on several assumptions, the most important one being the assumption
that fault-tolerance will be achieved with surface codes. This is a reasonable
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Classical security parameter (bits) 96

NIST ECC P-192 cost estimates

T-count 3.71× 1011

T-depth 1.24× 1011

Logical qubits 1994
Physical qubits 2.42× 106

Total wall-time 4.42 hours

Table 6. Benchmark cost of attacking the standardized NIST P-192 elliptic curve with
a fully-scalable fault-tolerant quantum adversary.

Classical security parameter (bits) 128

NIST ECC P-256 cost estimates

T-count 8.82× 1011

T-depth 2.94× 1011

Logical qubits 2330
Physical qubits 3.21× 106

Total wall-time 10.5 hours

Table 7. Benchmark cost of attacking the standardized NIST P-256 elliptic curve with
a fully-scalable fault-tolerant quantum adversary.

Classical security parameter (bits) 260

NIST ECC P-521 cost estimates

T-count 7.98× 1012

T-depth 2.66× 1012

Logical qubits 4959
Physical qubits 7.81× 106

Total wall-time 95 hours

Table 8. Benchmark cost of attacking the standardized NIST P-521 elliptic curve with
a fully-scalable fault-tolerant quantum adversary.

assumption today, as the surface code (or variants of it such as color codes or
3D topological codes) still remain the most promising candidate for scalable
quantum computing.

We also observe that for the security strength parameter values used in prac-
tice the current benchmark estimates indicate only a modest difference in secu-
rity against quantum attacks for RSA and ECC.

Our next steps will include improving over the benchmark estimates (i.e.
improving the algorithms, circuits, and fault-tolerance overheads) and investi-
gate additional cryptographic algorithms in use, both symmetric (private-key)
and asymmetric (public-key). We will also investigate how various space/time
trade-offs affect the wall-time.
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