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Abstract

Due to the scarcity of long-term market instruments, valuation of an ultra long-term

pension liability under the market-consistent valuation framework must be model based.

We develop a robust self-financing hedging strategy which adopts a min-max expected

shortfall hedging criterion to replicate the long dated liability for agents who fear model

misspecification. We introduce a backward robust least squares Monte Carlo method to

solve this dynamic robust optimization problem. We find that both naive and robust

optimal portfolios depend on the hedging horizon and the current funding ratio. The

robust policy suggests to take more risk when the current funding ratio is low. The

artificial yield curve constructed by the robust dynamic hedging portfolio is lower than

the naive one but is higher than the model based yield curve in a low rate environment.
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1. Introduction

In Europe, market consistent valuation has been widely adopted, particularly as a val-

uation framework of Solvency II for calculating defined-benefit pension liabilities. When

pension liabilities can be specified as a stream of risk-free cash flows, the underlying goal

of market consistent valuation is to replicate these non-traded cash flows as much as5
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possible by using cash flows of deeply liquid financial instruments. However, this task is

challenged by the fact the liabilities of pension funds frequently extend beyond the term

of available market instruments. The liquidity of financial market fades away beyond the

term of 30 years, while pension funds usually face ultra long-term (30 years and longer)

commitments with maturities of more than 70 years.10

Due to the scarcity of the long-term market instruments, the valuation of the ultra-

long-term pension liabilities requires an extrapolation of the yield curve beyond the last

liquid point of the financial market. Yield curve extrapolation is mostly model based.

Conditional on a perfectly accurate interest rate model, it is possible to replicate ultra-

long term (30 years and longer) liabilities by using a duration matching strategy if short15

positions in assets are allowed.

However, with incomplete bond markets, pension liability valuation is challenged by

both parameter uncertainty and model uncertainty. Parameter uncertainty is associated

with the ambiguity about the value of the exact parameters given that the underlying

model represents the true data generating process. Even in the liquid bond market, it20

is frequently the case that the deeply liquid instruments that promise the same amount

of cash flows in the future are traded at different prices. Variations in issue size, coupon

rate and other bond-specific factors may easily influence the estimation results. Further,

many smoothing techniques such as Nelson and Siegel (1987) are based on minimizing

sums of squared deviations and can give rise to more than one local solution. A small25

parameter misspecification in the interpolation phase can have a huge impact on the

extrapolated yield curve.

Model uncertainty involves fragile beliefs of the probability distribution of the under-

lying process. Conditional on a perfectly accurate interest rate model, one can derive

a term structure of the bond for all maturities. However, there are a large number of30

models that fit the bond prices up to their last liquid point while indicating very different

prices for the longer-term bonds.

Fear of model misspecification motivates an investor to find a robust decision rule that

works well over a set of models. The aim of this paper is to develop such a replication
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portfolio for an agent who faces uncertainty about the bond pricing model used for the35

ultra-long term liability valuation. Adapting the philosophy of Anderson et al. (2003),

we consider a class of models by imposing distortions to the bond risk premium which is

parameterized as a linear function of the spot rate. This framework enables us to modify

the general model uncertainty problem of Anderson et al. (2003) to the uncertainty of

a subclass of the bond pricing model, namely the risk premium parameters. However,40

our framework differs from a pure parameter uncertainty problem, since we allow for

stochastic drift distortions, which carry fragile beliefs over the law of motion of the bond

premium.

We adopt the robust control technique formulated by a min-max two players game

to deal with the fear of parameter misspecification. An agent who faces parameter un-45

certainty wants to replicate the ultra-long dated cash flow as much as possible using the

liquid fixed income instruments. With accessibility to short positions, we construct a

dynamic hedging portfolio to minimize the expected shortfall of a long maturity com-

mitment. Parameter uncertainty is modeled by an artificial agent who makes a decision

on the risk premium distortions over the investment horizon to maximize the expected50

shortfall. We impose a per-period uncertainty set to restrict the size of distortions. To

calibrate the bound, we link the distortions to the econometric parameter estimation

error. The bounded distortions imposed to the bond premium are related to the Good

Deal Bound of Cochrane and Saa-Requejo (2000), which restricts the maximum Sharpe

ratio in an incomplete market. Our robust optimization framework differs from Hansen55

and Sargent (2007), in which they introduce a relative entropy1 term to penalize the

drift distortions and use detection error probabilities to calibrate the entropy parameter.

The Hansen and Sargent framework implicitly imposes an “aggregate budget” constraint

towards the distortions rather than a time homogeneous constraint.

We introduce a robust least squares Monte Carlo method to solve this dynamic hedg-60

ing problem. It is a regression-based method that combines, in essence, the methods of

1Relative entropy is a statistical method to calculate the difficulty of distinguishing between two
models.
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Brandt et al. (2005), Carroll (2006) and Koijen et al. (2010). As an extension to the

existing literature, we impose the preference for robustness to the algorithm. We derive

the optimal solution for the max-player analytically, while the hedging position for the

min-player is solved numerically. The essential idea behind the regression based numer-65

ical method is to describe the realized value function proxy as a polynomial expansion

function of the risk factors.

Fear of parameter uncertainty induces a strong demand for the medium-term bonds

when the solvency ratio is low. This result contradicts many other robust asset allocation

studies such as Maenhout (2004) and Brennan (1998) who suggest a more conservative70

portfolio for robust investors. This is because the robust investor under our framework

believes that the artificial agent would choose a lower bond premium than the model

estimation. As a result, a risker portfolio with larger weight on medium-term bond is

required for investors that are liability driven. The optimal hedging portfolio depends

on the hedging horizon. The longer the hedging horizon, the more risk exposure to the75

medium-term bond markets is required.

We also construct an artificial yield curve that is based on the optimal dynamic

hedging strategy. The robust yield curve is always lower than the naive one that does

not consider parameter uncertainty. These lower discount rates imply that more initial

wealth is needed to meet the shortfall target.80

One strong assumption in this paper is that only bond risk premium parameters

are subject to misspecification. In other word, we only allow misspecification under

the risk-neutral Q measure, but not under the physical P measure. Another strong

assumption of our work is that agents do not engage in any learning process. Brennan

(1998) incorporates Bayesian learning with parameter uncertainty and finds that low85

risk-averse investors put more wealth into risky assets after learning while the high risk-

averse investors are more conservative with their portfolio. Peijnenburg (2017) conduct

a numerical study to show that both fear of model uncertainty and learning about the

equity premium contribute to the low stock market participation rate over the life cycle.

In terms of hedging criterion, this paper is closely related to Föllmer and Leukert90
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(2000), in which investors also face an option-style objective function and aim to minimize

the shortfall risk in incomplete markets while the underlying model is assumed accurate.

As an extension, we impose model uncertainty to the hedging problem and we provide a

semi-explicit solution in incomplete markets.

This paper is also related to the studies on long-term discount rate for pension liability95

valuation. Regulators propose a subjective method that extrapolates the liquid market

interest rates such that they converge in the long run to an unconditional ultimate forward

rate (UFR). The UFR is determined by long-term expectation of some macroeconomics

factors. According to the Solvency II regulation (see CEIOPS (2010)), the UFR is set at

4.2% (valid until the end of 2017) which consists of a short-term real rate of 2.2% and a100

long-term inflation of 2%.2 Broeders et al. (2014) argue that the UFR method is exposed

to both parameter and model uncertainty, and they provide sensitivity analysis and some

economic insights on how the choice of the UFR affects the pension funds hedging policy.

In terms of ultra long-term liability valuation, these studies focus on finding a reasonable

long-term discount rate via term structure extrapolation method, while we retrial this105

pricing problem by adopting the dynamic hedging technique.

The rest of the paper proceeds as follows. Section 2 describes the one-factor affine

term structure model employed in our economy. Section 2.1 uses the GMM method to

estimate the structural parameters. The dynamic robust optimization problem is ex-

plained in Section 3. Section 4 elaborates the regression-based techniques used in solving110

our dynamic programming problem. Section 5 discusses the robust optimal solution and

we provide policy evaluation of the robust policy. Section 6 concludes.

2. Term Structure Model

The term structure model we use is based on the framework of Duffee (2002) and

Duffie and Kan (1996). We assume that the spot rate r follows the one-factor Vasicek115

2On 4 April 2017, EIOPA published its final decision on the methodology for the annual calculation
of the UFR for each currency. For most currencies, the UFR will reduce to 4.05% on 1 January 2018.
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model

dr = κ (θ − r) dt+ σdW, (1)

where θ is the unconditional mean, κ is the mean reversion, σ is a volatility parameter

and dW is a univariate Brownian motion. For the purpose of hedging the risk of an ultra

long-term liability using shorter-term bonds, one-factor affine term structure model is

particularly suited since very long rates are mostly affected by the most persistent factor.120

Let P (t, T ) be the time t price of a discount bond maturing at time T . The Vasicek

model implies that bond prices follow the diffusion

dP = rPdt+BσP (λdt+ dW ) (2)

where B = 1−e−κτ
κ

is the volatility of long-term bond returns relative to the spot rate

volatility and where λ is the market price of bond risk. Departing from the original

Vasicek (1977) model, in which the price of risk parameter is assumed constant, we adopt125

Duffee (2002)’s framework by imposing an essential affine extension of the price of risk

such that λ depends on the spot rate,

λ = λ0 + λ1r (3)

we parameterize λ as a linear affine function of r with constant coefficients λ0 and λ1.

2.1. Model Calibration

Parameters of the model are estimated using standard GMM. We use Euro area nom-130

inal government bonds with triple A issuing ratings, obtained from the ECB statistical

data warehouse. We use daily annualized data on 3 constant maturity zero rates with

maturities of 3 months, and 5 and 10 years for the period from September 6, 2004 to

November 15, 2013.3

3The yield data is available at sdw.ecb.europa.eu. Sample size is 2360, and there are 9.2 (approxi-
mately) years in our sample, hence the average yearly number of trading days is 2,360

9.2 ≈ 255.
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Table 1: Summary Statistics

Means, standard deviation and autocorrelations of daily yield curve spot rate with three different
maturities and their difference. The variable rt denotes three-month spot rate. ADF denotes
the Augmented Dickey-Fuller unit root statistics with a 5% critical value of −3.43.

Variable Mean Std Std ∆ ADF

rt 1.62% 1.45% 3.28bp -0.61
Yt(5) 2.61% 1.10% 4.27bp -0.40
Yt(10) 3.36% 0.80% 3.97bp -0.94

Table 2: GMM Estimates.
The term structure model is estimated by the GMM method using daily European data. The bond
maturities used are three-month, five-year and ten-year maturities. The parameters are expressed in
annual terms. We choose 20 as the number of lags applied in the Newey West estimator.

Parameter Estimate Std error Correlation Matrix

κ 17.16% 17.43% 1.0000 −0.5893 0.8674 0.0380 −0.9987
θ 1.62% 1.24% −0.5893 1.0000 −0.6587 0.7808 0.5937
σ 0.52% 0.14bp 0.8674 −0.6587 1.0000 −0.1627 −0.8629
σλ0 −0.16% 0.36% 0.0380 0.7808 −0.1627 1.0000 −0.0363
σλ1 −14.19% 17.49% −0.9987 0.5937 −0.8629 −0.0363 1.0000

Summary statistics are displayed in Table 1. The average three-month rate is 1.62%135

with a standard deviation of 1.45%. The 5-year rate has a mean of 2.61% with standard

deviation of 1.1%. The 10-year bond has highest average rate but lowest volatility among

the three. The ADF test shows that we cannot reject the unit root hypothesis for any of

the three series.

In Table 2, we report the parameter estimation results for the full sample. The140

parameters are expressed in annual terms. The first two columns of Table 2 report the

estimated value and standard deviation of each structural parameter. The unconditional

mean of spot rate, θ, is about 162 basis points. The mean reversion coefficient κ implies

half-life innovation of 4 years.

The rest of the table reports the correlation matrix of parameters. We find an ex-145

tremely high correlation between κ and λ1, and between θ and λ0. The low volatility of σ

implies an accurate estimation performance on spot rate volatility. Hence we ignore the

parameter uncertainty on σ. Checking the eigenvalues of the covariance matrix of the

estimates, we find two positive eigenvalues 0.0609, 0.0001 whereas the remaining three

are very close to zero. From this we conclude that two sources of parameters estimation150

error exist.
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2.2. Model Uncertainty

To introduce the preference for robustness to the bond pricing model (2), we borrow

from the ideas of Anderson et al. (2003) and Hansen and Sargent (2007). Due to the

preference for robustness, agents treat (2) as a reference model for the unknown true155

model and look for a robust decision rule that works well for a set of models. We

consider a class of models indexed by a vector process ct. The vector ct represents model

misspecification around the reference model with ct ≡ 0 under the reference model. In a

pure diffusion setting, Anderson et al. (2003) view ct as an endogenous drift to the law of

motions of the state variables and is formally measured by relative entropy, a statistical160

method to calculate the distance between two models.

In this paper, we assume that parameters σ, κ and θ can be estimated precisely,

whereas the expected excess return parameters λ0 and λ1 are subject to estimation error.

As such, the general model uncertainty problem of Anderson et al. (2003) and Hansen

and Sargent (2007) is reduced to a subclass model uncertainty problem which leads to a165

problem of risk premium uncertainty. Hence, fear of model uncertainty only motivates

an agent to find a robust decision rule that works well for a set of bond risk premia.

To formulate the subclass model misspecification, we impose the perturbation vector

ct =

 c0

c1

 to the vector of the estimated risk premium terms of (3) defined as δ, with

δ =

 λ0

λ1

 (4)

and let δ0 be the true value of risk premium parameters.170

We assume that there is an artificial agent (“ nature”) who makes an instantaneous

decision on ct such that the true value of bond premium perturbs from the reference model.

The distortions c1 and c2 shift the mean distribution of the bond diffusion process (2)

by a unit of Bσ (c0 + c1r). Hence they specify a set of alternative measures referring to

different specifications of the stochastic process known as a Girsanov kernel.175

The distortions are bounded by a time-homogeneous uncertainty set S. A larger un-
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certainty set S indicates a greater fear of model uncertainty. To calibrate the bound on

the specification error ct, we relate the distortions to the econometric parameter estima-

tion error. We start with mapping the distortion vector ct to the estimation errors of

δ,180

δ − δ0 = ct. (5)

The estimation errors are assumed to be asymptotically normal with mean zero and

covariance matrix Ω
N , where Ω is the covariance matrix of δ and N is the length of the

sample used for estimation. We obtain the uncertainty set based on the property that

c′t
(

Ω
N

)−1
ct is a Chi-square distribution with two degrees of freedom, χ2(2). This leads to

the following uncertainty set S185

S :=


 c0

c1

 |
 c0

c1


′

Ω−1

 c0

c1

 ≤ γ2

 (6)

where γ2 = CVα
N , with CVα denoting the critical value of χ2(2) at α significance level.

Our uncertainty set differs from the Hansen and Sargent framework in two ways. First,

under their framework the perturbations are formally measured by relative entropy. The

entropy term penalizes drift distortions that move away from the reference model. The

relative entropy parameter plays the same role as a Lagrange multiplier of the Hamilton-190

Jacobian-Bellman equation for optimality. However, this Lagrange multiplier implicitly

imposes a constraint on the following bound for the specification error

E

[
T∑
0

ct · ct

]
≤ η0, (7)

where η0 sets the average size of the potential model misspecification. The uncertainty

set (7) is an aggregate-budget style present-value bound that restricts the distortions

cumulatively over the decision horizon T . This present-value constraint (7) is time-195

inconsistent. However, our uncertainty set (6) is a time-homogenous constraint that we
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can impose cleanly on nature’s future actions without keeping track of what has happened

in the past.

The second difference is related to the uncertainty set calibration. Under the Hansen

and Sargent framework, the boundary parameter η0 is linked to relative entropy which in200

essence is a Lagrange multiplier over the misspecification bound (7). Hansen and Sargent

(2007) use a Bayesian model selection problem (also called the detection error probability

method) to calibrate this relative entropy parameter. The detection error probability

method performs likelihood ratio tests under the two models based on available data. A

higher degree of robustness leads to a lower detection error probability. We define the205

uncertainty set from the econometric estimation error.

We choose a significance level of α = 5% at which the corresponding critical value

of χ2(2) is 5.99. We also assume that the minimum sample horizon for estimation is

N = 200 time units. Hence, as a benchmark, the misspecification bound is γ = 0.17 or

γ2 = 0.03. Either a longer data set or a higher significance level would reduce the bound210

parameter γ and results in a smaller uncertainty set for ct, which indicates a gaining

confidence over the reference model.

The impact of the spot rate r on the bond premium λ is governed by λ1. If λ1 is

estimated with error, then the impact from the spot rate is also ambiguous. Panel (a)

of Figure 1 presents the 20-year nominal bond risk premia for a realistic range of spot215

rates. The risk premium is increasing with the spot rate. Misspecification of market price

of risk results in a perturbation of the bond premium of around 200 basis points either

downwards or upwards.

The uncertainty set S has a circular shape in ct space centered around zero, but

turns to an ellipsoid shape when mapped to the δ space. Panel (b) of Figure 1 maps220

the uncertainty set of ct to the (λ, λ1) space centered by the point estimate
(
λ̂, λ̂1

)
with

r = 2%, where λ̂ = λ̂0 + λ̂1r. The very narrowly shaped ellipsoid spaced is mainly driven

by the large variation between the point estimate of λ0 and λ1.
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3. Robust Optimal Portfolio Choice

3.1. Dynamic Replication Strategy225

The agent with wealth Xt at time t = 0 aims to replicate an ultra long dated liability

with payoff equal to one at a long end maturity time T by investing in two liquid fixed

income instruments: a medium-term zero coupon bond with maturity τ2 < T ; and a short

term bond. The hedging horizon T is assumed beyond the term of the last liquid point of

the financial market. The replication strategy is constructed based on dynamic hedging230

and the agent is only interested in eliminating the downside risk. Therefore the hedging

criterion is defined over the expected shortfall [1−XT ]+ at time T . This hedging criterion

allows the agent to replicate the ultra-long term cash flow as much as possible by active

trading using the minimum amount of wealth. If the agent is not aware of parameter

uncertainty, the hedging portfolio relies fully on the point estimator δ̂ =

 λ̂0

λ̂1

 and we235

define such specification-error free trading strategy as a naive policy. The naive dynamic

optimization problem is defined as

min
wt:0≤t<T

E
[
(1−XT )+ | Ft

]
(8)

The fraction of wealth allocated to long-term bonds with maturity τ2 at time t is indicated

by wt and short positions are allowed this setting. The law of motion of wealth is given

by240

dX = (r − wB(τ2)σλ)Xdt− wB(τ2)σXdW (9)

where we omit the subscripts t.

Our dynamic trading strategy (8) is not affected by rollovers which occur when rein-

vesting wealth from matured bonds into newly issued bonds of the same feature. We

assume that the invested fixed income securities are continuously issued and are liquidly

traded during the entire decision horizon. Even when the remaining hedging horizon is245

shorter than then the marketable term, the investor still keeps on active trading. If we
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stop the active trading as soon as the market becomes complete when the remaining

maturity of the liability equals to maturity of medium-term bond, then the expected

shortfall hedging criterion would not be minimized and the required initial capital for

hedging long-term liabilities would be higher.250

3.2. Robust Hedging

The robust control method is formulated by a min-max expected utility framework

which according to Hansen and Sargent (2007) resembles a two-player zero-sum game.

The investor who fears model misspecification takes the role of min-player and seeks a

robust hedging policy that minimizes the expected shortfall at maturity T under the255

worst-case scenario decided by the artificial agent. The artificial malevolent agent takes

the role of max-player and makes a decision on distortions ct given the min-player’s

choice. The equilibrium of the game gives us an instantaneous robust hedge. The robust

optimization problem is given by

min
wt:0≤t<T

max
ct∈S

E
[
(1−XT )+ | Ft

]
(10)

the artificial agent makes an instantaneous decision on c0 and c1 bounded by the time-260

homogeneous constraint S, as thus controls the risk premium parameters λ0 and λ1.

4. Numerical Technique

Robust hedging with an expected shortfall objective function does not allow for an

analytical solution, so we use a numerical approach instead. Our method in essence

combines the methods proposed by Brandt et al. (2005) and Koijen et al. (2007) to ap-265

proximate the conditional expectation that we encounter in solving the dynamic program

by polynomial expansions in the state variables. We also follow Diris (2011)’s approach

to parameterize the coefficients of the approximation function by a quadratic function of

portfolio weights, such that we can calculate the optimal portfolio under each path ana-

lytically. Furthermore, this method allows us to achieve an accurate result using a very270
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small grid of testing portfolios. We integrate robustness with the standard simulation

based algorithm.

We start by simulating a large number of N sample paths with length T years of bond

returns using Euler discretisation. We also choose an M− dimensional grid for financial

wealth values. The wealth grid points are indicated by Xj, j = 1, · · · ,M . In total, we275

have (M ×N) grid points at each point in time.

The algorithm for the robust policy consists of two parts. We first solve nature’s deci-

sion analytically. Nature’s decision only influences the long-term bond premia. Therefore,

under the assumption that wt ≥ 0, maximizing the expected shortfall boils down to min-

imizing bond premia. Therefore, we can analytically solve for nature’s decision.280

The optimal c0, c1 are the solution of following quadratic programming problem.

min
ct
−B(τ2)σ

(
δ̂ + ct

)′
α,

s.t c′tΩct = γ2

where δ̂ =

(
λ̂0 λ̂1

)′
and αt =

(
1 rt

)
. We can easily find the optimal solution for

ct:

c∗t = γ
Ω−1αt√
α′tΩ

−1αt

Therefore, the decision of the artificial agent at each rebalancing time step t depends

exclusively on rt. The min-max problem is now simplified to the minimization problem285

alone.

Figure 2 displays the robust optimal bond premium as a function of bond maturity

against the point estimate. Nature intends to minimize the bond premium so as to

maximize the expected shortfall at time T , therefore, the robust bond premium at any

maturity is always lower than the point estimate.290

In the second part of the algorithm, we use the backward least squares Monte Carlo

(LSMC) method to solve for optimal portfolio. We summarize the LSMC algorithm in

three steps.
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Step 1. At time step t, i.e. starting from period T−∆t and iterating to period 0, construct

realized loss VT = (1−XT )+ for all simulated paths using the following information295

• Robust optimal portfolio from previous time steps w∗s(s = t+ ∆t, · · · , T −∆t)

• Optimal natures decision from previous steps λ∗s (this is analytically solved)

• A small grid of testing portfolio wh, h = 1, · · · , H

• Spot rate ri,s with i = 1, · · · , N

• Current wealth Xj,t, j = 1, · · · ,M300

so we have a cross-section size of N ×M ×H .

Step 2a. Run a cross-sectional regression by approximating the realized objective function

VT,ijh calculated from Step 1 on trajectories of state variables as well as the testing

portfolio wh on a second-order polynomial expansion (including cross term) at a certain

point in time.305

Vijh,T (Ft) = β′f (Xj,t, ri,t, wh) + εijh,t (11)

Step 2b. Now we parameterize the approximate conditional value function as a quadratic

function of portfolio weights such that we can analytically calculate the optimal portfolio.

For a naive investor, the first part of the algorithm can be ignored since nature does

not play a role in the naive hedging framework. Appendix A elaborates on the LSMC

algorithm in more detail.310

5. Long-term Investors and Bond Premia Uncertainty

In this section, we investigate the impact of model uncertainty on bond portfolio

allocations. Section 5.1 analyzes the robust optimal portfolio. Section 5.2 discusses the

property of the robust yield curve.
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5.1. Optimal Portfolio Choice315

Figure 3 plots the optimal portfolio of 20-year (τ2 = 20) nominal bonds as a function

of the investment horizon based on three different hedging policies, namely naive policy,

robust policy and delta hedging policy.

5.1.1. Delta Hedging

The delta of a long dated liability is defined as the rate of change of the price of liability320

with respect to the price of the underlying τ2− year bond. The delta of long-term liability

is

∆ =
∂P (0, T )

∂P (0, τ2)
=
B(T )

B(τ2)
,

assuming the Vasicek model is valid for all maturities. We use Delta hedge as a benchmark

to investigate the optimal portfolio choice as a function of the solvency condition. We use

the funding ratio, a fraction of the current wealth level X0 and the hypothetical price of325

liability P (0, T ), to measure the solvency position of a fund. If the funding ratio is lower

than one, then the fund has a higher expected value of liability than of its assets, which

implies under-funding.

Suppose we have a funding ratio greater than one, and the underlying model is cor-

rectly specified, then the Delta position is indeed the optimal portfolio to hedge the330

long-dated liability. This is because when the current funding ratio is above one, down-

side risks fade away and the hedging problem boils down to a complete-market setting

where the long-dated payoff can be fully replicated by traded bond portfolios. It is veri-

fied by Figure 3b that if the current funding ratio is above one, a delta neutral position

is the optimal policy.335

Figure 3 shows that the bond allocations are highly dependent on the hedging horizon

and the present funding ratio for both the naive and the robust policies. Both hedging

methods are identical when the horizon T ≤ 20, because market completeness eliminates

the model uncertainty. When the funding ratio is low (see Figure 3a), both policies

suggest a risker position than the Delta hedge. In this case, following the Delta strategy340
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may hedge the long-term interest rate risk but does not help to meet the long-dated

commitment, due to insufficient current wealth.

Also, when the present funding ratio is low, a robust investor takes a more risky

position than a naive investor. This is because a robust investor worries that the artificial

agent may choose even lower bond premia than the model estimated, and therefore the345

robust method is even more aggressive. The result for the robust policy is the opposite

of many results in the literature eg. Maenhout (2004). Usually, the robust policy is

more conservative compared to the naive one. In Maenhout (2004)’s model, an investor

aims to maximize her terminal wealth utility function. The preference for robustness

suppresses the beliefs in risk premium. Without the liability constraint, a robust investor350

will therefore take less risk.

We now demonstrate how the optimal policy respond to changes in the funding ratio

and the spot rate. Figure 4 displays the optimal asset allocation to 20-year bonds under

the naive policy (Figure 4a) and the robust policy (Figure 4b) for a reasonable range of

the funding ratio (FR). These figures are constructed by regressing the optimal policy355

along all trajectories of state variables used in the simulations at a certain point in time.

Figure 5 summarizes the insight of Figure 4. The lower the funding ratio, the riskier

the position for hedging against the shortfall risk. This property holds true for both

policies. However, the robust policy is risker due to the fear of underestimated bond

premia. Figure 3 leads to the same conclusion.360

Figure 6 presents the optimal asset allocation under different spot rates when the

funding ratio is 80%. For both policies, the optimal allocation increases with the spot

rate, as the spot rate is positively related to bond premia. A higher bond premium leads

to a higher risk exposure on long-term bonds. The robust policy Figure 6b differs from

the naive policy Figure 6a in two ways. First, the robust policy is less sensitive to the365

spot rate. This is an important and a desired feature of the robust policy. Second, the

difference between the two policies gets larger for a lower value of the spot rate.

Figure 7 presents the optimal expected shortfall value as a function of the funding ratio

and hedging horizon. Figure 8 summarizes the insights of Figure 7. First, without con-

16



sidering model uncertainty, the expected shortfall value is dramatically under-estimated370

when the funding ratio is low. Secondly, the mispricing error increases with the invest-

ment horizon. The increasing amount of mispricing is caused by an accumulative fear of

the underestimated bond premia.

5.2. Robust Term Structure

An investor is interested in the optimal strategy that guarantees the liability with the375

lowest required initial wealth X∗, which is called the super-hedging strategy. Once we

have determined the minimum wealth X∗, we can define the implicit T− period discount

rate as

y(T ) = − 1

T
lnX∗ (12)

For most models of the term structure, the super-hedging strategy will be extremely

costly. In our model, a super-hedging strategy will not exist, since there will always be380

a small probability of underfunding because our interest rate process is Gaussian. We

define approximately risk-free rates through the minimum assets required as having an

expected shortfall of less than S,

y(T ) = − 1

T
lnX∗S, with S = E0

[
(1−XT )+ | X0 = X∗S

]
(13)

Expected shortfall does not reward any upside. The lower S is, the more initial wealth

is required to hedge against the targeting shortfall risk, hence the lower y(T ) will be.385

The lowest level of y(T ) is simply the underlying term structure model that by definition

guarantees zero expected shortfall.

Figure 9 presents the implied yield curves under different hedging policies at different

shortfall levels and initial spot rates. As a benchmark, we plot the two hedging policy

based yields together against the Vasicek yield curve. We highlight two crucial insights390

from Figure 9. First, the robust yield is always lower than the naive yields regardless of

the current spot rate or shortfall target. Due to the concern about an underestimated

bond premium, a robust investor requires more initial wealth to meet the shortfall target.

17



Second, both policy-based yield curves are higher than the Vasicek curve when the spot

rate is low (Figure 9a, 9b). When the spot rate is low, the present value of liability will395

be higher, hence the required initial wealth would be higher as well, in order to meet

the long-term commitment. The Vasicek model is based on a zero shortfall requirement,

and hence has a lower yield curve compared with the other two curves which allow for

positive expected shortfall. We also find that the Vasicek yield curve overlaps the naive

curve when the spot rate is high if S is sufficiently small (Figure 9c).400

6. Conclusion

We have constructed an optimal bond portfolio to minimize the replication error of

an ultra long-dated cash flow in the presence of incomplete bond markets and model

uncertainty. The robust policy is not always more cautious than a naive policy. With

a fixed long-term commitment, we find that the robust portfolio suggests holding riskier405

positions.

The robust hedging strategy is a powerful method for pricing an ultra long-dated

liability. Although the robust policy requires more initial wealth to guarantee a certain

level of shortfall risk, it provides a more successful and resilient hedge, especially in a

disordered environment where the bond premium is misspecified.410

There are at least two directions in which future research along these lines would

be interesting. The first is to consider mean-reversion parameter uncertainty under the

physical P measure. We find from calibration results that the mean reversion parameter

κ which is under the P measure, is exposed to very higher estimation error. Further,

κ is also highly correlated with other parameters, such as the long-run mean parameter415

and the volatility term as well as the market-price-of-risk parameters. The layout of the

optimization problem in this study does not allow for parameter uncertainty of other

dimensions. Mean-reversion is especially relevant in interest rate models. It not only

influences the expected value of the bond return, but also determines the volatility of the

bond diffusion process for longer term bonds. In our framework, we implicitly consider420

mean reversion uncertainty but is only limited under the risk-neutral Q measure. Since
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both λ0 and λ1 are subject to parameter uncertainty, the mean reversion under Q, which

is equal to κ−λ1σ is uncertain. This is the most important parameter, since it determines

the volatility of bond prices, namely B(T ) and B(τ2). It does not affect the spot rate

dynamics, but it does affect the medium-term bond.425

Second, our robust model is applicable to any term structure model, and the Vasicek

model used in this paper is simply a start. We can play our hedging problem under

various reference models to see whether the model builder’s decision also matters.
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Appendix A Robust LSMC algorithm

In this section, we elaborate the numerical method used in this paper. We show how

the regression-based method works in our robust hedging problem and we also analyze the435

accuracy of our algorithm. This section proceeds as follows, we first introduce the naive

LSMC algorithm without considering model uncertainty. Second, we show how nature’s

choice can be solved analytically. Third, we explain the robust LSMC algorithm. Last,

we analyze the accuracy of our algorithm.

A.1 Grid Generation440

The hedging period is from 0 to T . We partition [0, T ] into m subintervals of length

∆t = T
m

. Hence the bond portfolio is rebalanced every ∆t unit of time. We start by

simulating N trajectories of m time periods of spot rate under P measure using discrete

Euler approximation.

rt+∆t = rt + κ (θ − rt) ∆t+ σ
√

∆tZ
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with Z a standard normal random variable. We indicate the spot rate at time t in445

trajectory i by ri,t, i = 1, · · · , N , t = 0,∆t, · · · , T −∆t, T . At step 0, r0 is also random

with mean θ and volatility σ√
2κ

.

Next, we need to generate an M dimensional grid of funding ratio. Funding ratio at

time t is defined as a fraction of instantaneous wealth against the hypothetical bond price

maturing at T , P (t, T ). The funding ratio grids are indicated by FRj, j = 1, · · ·M . The450

reason for choosing funding ratio grid instead of wealth grid will be explained later in

LSMC algorithm.

We also generate a small grid of testing portfolios, denoting wh, h = 1, · · · , H. We

assume the portfolio grid is bounded between 0 and twice of delta hedge ∆ = B(T )
B(τ2)

,

wh ∈ [0, 2∆].455

As a benchmark, we choose ∆t = 0.25, N = 10, 000, M = 40 and H = 5.

A.2 LSMC

The problem is solved by means of simulation based dynamic programming. We

outline the general recursion. We first explain the naive case. In addition to the generated

grids of the state variables, we also generate N paths of gross bond returns based on point460

estimates of bond premia Λ̂0 and Λ̂1,

Rt+∆t = 1 +
(
rt(1−B(τ2)σΛ̂1)−B(τ2)σΛ̂0

)
∆t−B(τ2)σ

√
∆tZ

The gross bond return at time t in trajectory i is denoted by Ri,t+∆t.

Time T −∆t. The problem at time step T −∆t can be summarized by

min
wT−∆t

E
[
(1−XT )+ | FT−∆t

]
We first generate a time-dynamic wealth grid denoting Xj,T−∆ = FRj × P (T − ∆t, T ),

where P (T − ∆t, T ) is the hypothetical bond price at time T − ∆ maturating at T465

depending on rT−∆t.

The reason we choose a fixed funding ratio grid instead of a fixed wealth grid is

20



because our value function depends on terminal wealth XT , keeping wealth grid fixed

cannot guarantee us a reasonable range of terminal wealth, typically for long hedging

horizon and when recursion approaches to time step 0.470

Next we construct the realized terminal wealth under each simulated path (i, j),

Xijh,T (FT−∆t) = Xj,T−∆ ((1 + ri,T−∆)(1− wh) +Ri,Twh)

The realized objective function is Vijh,T (FT−∆t) = (1−XT,ijh(FT−∆t))
+. Next, we regress

the realized value function with a polynomial expansion of the state variables.

Vijh,T (FT−∆t) = (a0 + a1ri,T−∆t + a2FRj + a3IFRj + a4FRjIFRj)

+ (b0 + b1ri,T−∆t + b2FRj + b3IFRj + a4FRjIFRj)wh

+ (c0 + c1ri,T−∆t + c2FRj + c3IFRj + a4FRjIFRj)w
2
h + εT−∆t (14)

where IFR is an indicator function, with IFRj = (1− FRj)
+.

It is noticed that, along each path, the conditional variables are known hence the

conditional expectation of the approximation regression is a quadratic function of the

portfolio weight. Therefore, minimizing the conditional expectation boils down to min-475

imizing a quadratic function of portfolio. We rewrite the conditional expectation of the

value function as follows

E [Vijh,T | FT−∆t] = aij + bijwT−∆t + cijw
2
T−∆t (15)

where

aij(FT−∆t) = a0 + a1ri,T−∆t + a2FRj + a3IFRj + a4FRjIFRj

bij(FT−∆t) = b0 + b1ri,T−∆t + b2FRj + b3IFRj + b4FRjIFRj

cij(FT−∆t) = c0 + c1ri,T−∆t + c2FRj + c3IFRj + c4FRjIFRj

The optimization problem boils down to solving for the root of Eq.(15), w∗ij,T−∆t = − bij
2cij
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if cij > 0.480

Time t = T − 2∆t, · · · , 0. We now discuss the general recursion of all any other point

in time. Suppose we have optimized the hedging policy as of time t + ∆t onwards. The

realized value function at time t is given by

Vijh,T (Ft) =

[
1−Xj,t ((1 + ri,t)(1− wh) +Ri,t+∆twh)

T−∆t∏
s=t+∆t

((1 + ri,s)(1− w∗s) +Ri,s+∆tw
∗
s)

]+

where Xj,t = FRj × P (t, T ). Next, we approximate conditional expectations [Vijh,T | Ft]

by functions of state variables and the testing portfolio485

E [Vijh,T | Ft] = β′f(Xj,t, rj,t, wh)

Last, we rewrite the conditional expectation of each path as a quadratic function of

portfolio wt and solving for the root.

min
wt
E [Vijh,T | Ft] = min

wt
f(wt)

We need to re-calculate the dynamic allocation T
∆t

times to retrieve the optimal de-

cision now w0 that we are interested in. Along this way, we have also obtained all other

optimal portfolios for different hedging horizons τ < T .490

A.3 Closed-Form Nature’s Choice

Next, we consider the robust case when bond premia are misspecified. A straight

forward but more complicated method is to repeat the naive algorithm over a set of

testing bond premia taking into uncertainty set constraint. Then we obtain a set of naive

optimal policies under each path conditional on a testing bond premium. Then we could495

find the optimal nature’s choice under each path either by grid search or using regression

based method. However, neither methods are efficient nor accurate. If we use grid search

method, we need to generate a fine grid of λ0 and λ1. This costs a huge computational

memory. Unlike the portfolio weight, the quadratic approximation does not work in the
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nature’s choice (λ0, λ1) due to low R2.500

A more efficient and accurate method we proposed is to approximate the expected

shortfall by a function of bond return. Remark: this only works because we have sim-

plified the problem so much that only Λ is uncertainty. We find that value function is

monotonically decreasing with bond return. The approximation is sufficiently accurate

since R2 is nearly one. Therefore, we transform a maximization problem to a minimizing505

bond return problem, which can be analytically solved by linear programming.

To test the validity of the new methods, we first generate L pairs of testing market

price of risk (MPR) denoting (λ0,l, λ1,l), with l = 1, · · · , L and (λ0,l, λ1,l) ∈ S. Under

each pair of testing MPR, we simulate N paths of gross bond returns over m periods.

The gross return at time t in path i under testing MPR (λ0,l, λ1,l) is denoted by Ril,t+∆t510

At step T −∆t, we construct realized value function Vijl,T based on mul-specification

of bond returns Ril,T using a random fixed portfolio weight, then we approximate the

conditional value function as a function of Ril,T and fund ratio

E
[
Vijl,T

(
w∗T−∆t

)
| FT−∆t

]
= β0 + β1Ril,T + β2R

2
il,T + β3FRj + β4IFRj

The goodness of fit is larger than 0.99 regardless of the portfolio weight we choose.

We find that the conditional expectation of value function is a strict downward sloping515

convex function of Ril,t. This property holds for the entire hedging horizon if we recurse

the algorithm backward till step 0.

Therefore, the global maximization problem boils down to minimizing bond return

which is equivalent to minimizing bond premia since nature can only control over the

drift term of bond diffusion process. Further, the ellipsoid uncertainty set S is convex,520

hence the minimum bond premium should locates on the ellipsoid.

The resulting nature’s optimal decision depends only on the instantaneous spot rate

rt.
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A.4 Robust LSMC

We can follow the naive LSMC algorithm to calculate the robust optimal portfolio525

expect that we first need to analytically solve for nature’s choice at each backward step

in time. Hence at time t, realized value function contains both optimal portfolios as well

as nature’s choice of bond premia from steps onwards

Vijh,T =

[
1−Xj,t

(
(1 + ri,t)(1− wh) +R2∗i,t+∆twh

) T−∆t∏
s=t+∆t

(
(1 + ri,s)(1− w∗s) +R∗i,s+∆tw

∗
s

)]+

where R∗i,t+∆ indicates the optimal bond return at time t on path i with optimal MPR

λ∗0,t + λ∗1,tri,t530

A.5 Goodness of Fit

We investigate the accuracy of our algorithm by means of R2. The R2s of parametriza-

tion regression at step T −∆t are higher than 0.995 for both naive and robust case. The

goodness of fit by construction, has to decay backwards of time, because we are accu-

mulating cross sectional information over each time period onward. The quality of the535

global quadratic approximation depends on R2 at first approximation step T − ∆t and

the speed of decaying. The longer the hedging horizon is, the lower R2 will be at time

0. i.e. If T ≤ 20 years, R2 at time 0 is higher than 95%. If we set investment horizon

extremely long, T = 80 years, R2 drops to 0.83 at time step 0. This is still reasonably

high, since the last step cross-sectional regression contains 320 time steps of cross-section540

information. Grid sizes or rebalancing frequency do not influence the goodness of fit.
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Figure 1: Bond Premia
The figure presents the 20-year bond risk premia for different spot rate under different choices of λ0 and
λ1. The ambiguity of market price of risk constrained by set S is shown in (6) with γ2 = 0.03. Panel
1a presents the minimum and maximum values of bond premia within the feasible region for different r.
The point estimate premia λ̂ are located in between the two extremes. Panel 1b plots the feasible region
of bond premia for different choices of λ1 under the unconditional expectation of spot rate.
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Figure 2: Nature’s Decision on Bond Premium.
The figure presents nature’s choice of bond risk premium against the naive estimate −B(τ)σλ̂ under
different bond maturities. The spot rate is equal to 2%
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Figure 3: Optimal Bond Portfolio for Different Horizons
The figure plots 20-year bond weights against different investment horizons when current funding ratio
is 80% (Figure 3a) and 110% (Figure 3b) for different hedging policies. The present spot rate is 2%.
The weights are based on three different hedging policies: naive hedge, robust hedge and delta hedge.
Results are based on 10,000 draws of predictive bond distribution.
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Figure 4: Optimal Portfolio under Different Funding Ratio (1)
The figure plots the optimal portfolio of 20-year bond as a function of investment horizon and current
funding ratio with spot rate equal to 2%.
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Figure 5: Optimal Portfolio under Different Funding Ratio (2).
The figure summarize the key insight of Figure 4 under three reasonable funding ratio levels.
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Figure 6: Robust Policy under Different Spot Rate.
The figure plots naive (Figure 6a) and robust (Figure 6b) optimal bond portfolio as a function of spot
rate and hedging horizon when current funding ratio is 80%.
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Figure 7: Optimal Expected Shortfall (1).
The figure plots the expected shortfall as a function of hedging horizon and funding ratio under naive
(Figure 7a) and robust (Figure 7b) policies when spot rate is 2%.
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Figure 8: Optimal Expected Shortfall (2).
The figure plots the robust expected shortfall against the naive one as a function of funding ratio when
hedging horizon is 40 years (Figure 8a) and when the horizon is 60 years (Figure 8b).
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(b) T = 60
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Figure 9: Robust Yield Curve
The figure plots policy-based yield curve again the benchmark Vasicek yield curve under different spot
rate and shortfall target. The benchmark yield curve by definition has zero expected shortfall.
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(b) r0 = 0.02, S = 0.05
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(d) r0 = 0.05, S = 0.05
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