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Abstract

Designing public key cryptosystems that resist attacks by quantum computers is an important
area of current cryptographic research and standardization. To retain confidentiality of today’s
communications against future quantum computers, applications and protocols must begin
exploring the use of quantum-resistant key exchange and encryption. In this paper, we explore
post-quantum cryptography in general and key exchange specifically. We review two protocols for
quantum-resistant key exchange based on lattice problems: BCNS15, based on the ring learning
with errors problem, and Frodo, based on the learning with errors problem. We discuss their
security and performance characteristics, both on their own and in the context of the Transport
Layer Security (TLS) protocol. We introduce the Open Quantum Safe project, an open-source
software project for prototyping quantum-resistant cryptography, which includes liboqs, a C
library of quantum-resistant algorithms, and our integrations of liboqs into popular open-source
applications and protocols, including the widely used OpenSSL library.
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1 Introduction

All Internet security protocols that use cryptography, such as the Transport Layer Security (TLS,
a.k.a. the Secure Sockets Layer (SSL)) protocol [18] have the same basic structure: public key
cryptography is used to authenticate the communicating parties to each other and to establish a
shared secret key, which is then used in symmetric cryptography to provide confidentiality and
integrity to their communication. The security of most public key cryptosystems depends on the
difficulty of solving some mathematical problem, such as factoring large numbers or computing
discrete logarithms in finite field or elliptic curve groups. The best known solutions to these problems
run in exponential (or sub-exponential) time, making it infeasible for attackers to break the schemes.

Quantum mechanics allows for devices that operate on quantum bits, known as qubits, which
are two-state quantum systems that can be in any quantum superposition of 0 and 1. Such
devices are called quantum computers, and could solve certain types of problems much faster than
“classical” (non-quantum) computers. Shor’s algorithm [48] could efficiently (i.e., in polynomial
time) factor large numbers and compute discrete logarithms, breaking all widely deployed public
key cryptosystems. Most symmetric key schemes, such as the Advanced Encryption Standard
(AES) cipher, would not be broken by quantum algorithms, although would generally need bigger
keys. While large-scale quantum computers do not yet exist, building quantum computers is an
active area of research. and Schoelkopf [17] identify seven stages in the development of quantum
computers: so far, physicists can perform operations on single and multiple physical qubits, perform
non-destructive measurements for error correction, and are making progress on constructing logical
memories with longer lifetime than physical qubits; to achieve large-scale quantum computation, we
will require the ability to perform operations on single and multiple logical qubits with fault-tolerant
computation. Regarding the million-dollar question of when a large-scale quantum computer will be
built, in 2015 Mosca [38] stated “I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2
chance by 2031.”

Any attacker who records present-day communications would be able to decrypt it once a
quantum computer is built; and there is evidence that governments are storing vast quantities
of encrypted Internet traffic. This motivates the urgent use of cryptography that is designed
to be safe against quantum attackers—called “post-quantum” or “quantum-safe” or “quantum-
resistant” cryptography. In August 2015, the United States National Security Agency (NSA) issued
a memo regarding its Suite B cryptographic algorithms for government use, advising that it plans to
“transition to quantum resistant algorithms in the not too distant future” [39]. In August 2016, the
United States National Institute of Standards and Technology (NIST) launched its post-quantum
crypto project1, a multi-year process with the goal of evaluating and standardizing one or more
quantum-resistant public key cryptosystems.

Post-quantum cryptography. There are several classes of mathematical problems that are
conjectured to resist attacks by quantum computers and have been used to construct public key
cryptosystems, several of which date from the early days of public key cryptography. These include:

• Code-based cryptography. The McEliece public key encryption scheme [36] was one of the
first public key schemes, and is based on error-correcting codes, in particular, the hardness of
decoding a general linear code. Niederreiter [40] subsequently proposed a digital signature
scheme based on error correcting codes.
• Hash-based cryptography. Merkle [37] first proposed the use of hash functions for digitally

signing documents; Lamport and Diffie [30] and Winternitz then showed how to convert

1http://www.nist.gov/pqcrypto
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Merkle’s one-time signature scheme into a many-time signature scheme. These schemes are
based entirely on standard hash function properties, and thus are believed to be among the
most quantum-resistant. Modern variants include SPHINCS [7] and XMSS [13].
• Multivariate cryptography. These cryptosystems are based on the difficulty of solving non-linear,

usually quadratic, polynomials, over a field [41, 35].
• Lattice-based cryptography. Ajtai [1] proposed the first cryptographic schemes directly based

on lattices. Regev [46] then introduced the related learning with errors (LWE) problem, the
security of which is based on lattice problems, and which now forms the basis of a variety of
public key encryption and signature schemes [31]. The ring learning with errors (ring-LWE)
problem [33] uses additional structure which allows for smaller key sizes. Another scheme
whose security relates to lattices is the NTRU scheme [26], which also allows for fairly small
key sizes.
• Supersingular elliptic curve isogenies. One of the newest candidates for quantum-resistant

public key cryptography is based on the difficulty of finding isogenies between supersingular
elliptic curves [20].

In addition, quantum information can be used directly to create cryptosystems; this is called
quantum cryptography. For example, quantum key distribution allows two parties to establish a
shared secret key using quantum communication and an authenticated classical channel. While this
can provide very strong security, it is not yet a candidate for widespread usage since it requires
physical infrastructure capable of transmitting quantum states reliably over long distances, so in the
rest of this paper we focus solely on quantum-resistant cryptography using classical (non-quantum)
computers.

Existing quantum-resistant schemes generally have several limitations. Compared with traditional
RSA, finite field, and elliptic curve discrete logarithm schemes, all quantum-resistant schemes have
either larger public keys, larger ciphertexts/signatures, or slower runtime. Many quantum-resistant
schemes are also based on mathematical problems that are, from a cryptographic perspective, quite
new, and thus have received comparably less cryptanalysis. There remain many open questions in
post-quantum cryptography, making it an exciting and active research area: the design of better
public key encryption and signature schemes with smaller keys and ciphertexts/signatures; improved
cryptanalysis leading to better parameter estimates; development of fast, secure implementations
suitable for high-performance servers and small embedded devices; and integration into existing
network infrastructure and applications.

(It is worth noting that research into post-quantum cryptography is valuable even if large-scale
quantum computers are never built: it is possible that the factoring, RSA, or discrete logarithms
problems will be solved by some (non-quantum) mathematical breakthrough. Having a diverse
family of cryptography assumptions on which we can base public key cryptography protects against
such a scenario. Furthermore, the cryptographic agility that will help prepare for a transition to
yet-to-be-determined quantum-resistant cryptographic algorithms will also enable the ability to
respond quickly to other unexpected weaknesses in cryptographic algorithms.)

This paper. In this paper, we discuss two research projects in the area of lattice-based key
exchange: the “BCNS15” protocol [10] based on the ring-LWE problem, and the “Frodo” protocol
[9] based on the LWE problem. We will explain the basic mathematics of these protocols, and our
results on the performance of these protocols and their integration into the TLS protocol. We will
introduce the Open Quantum Safe project, an open-source software project designed for evaluating
post-quantum cryptography candidates and prototyping their use in applications and protocols such
as TLS.
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This line of work focuses initially on key exchange, with digital signatures to follow closely. As
noted above, any attacker who records present-day communications protected using non-quantum-
resistant cryptography would be able to decrypt it once a quantum computer is built. This implies
that information that needs to remain confidential for many years needs to be protected with
quantum-resistant cryptography even before quantum computers exist. In communication protocols
like TLS, digital signatures are used to authenticate the parties and key exchange is used to establish
a shared secret, which can then be used in symmetric cryptography. This means that, for security
against a future quantum adversary, authentication in today’s secure channel establishment protocols
can still rely on traditional primitives (such as RSA or elliptic curve signatures), but we should
incorporate post-quantum key exchange to provide quantum-resistant long-term confidentiality.
This has the benefit of allowing us to introduce new post-quantum ciphersuites in TLS while relying
on the existing RSA-based public key infrastructure for certificate authorities. However, applications
which require long-term integrity, such as signing contracts and archiving documents, will need to
begin considering quantum-resistant signature schemes.

Notation. Let χ be a distribution; a
$← χ denotes sampling a randomly according to χ. The

uniform distribution is denoted by U . Vectors are denoted in lower-case bold, like a; matrices are
denoted in upper-case bold, like A. The inner product of two vectors a and b is 〈a,b〉. Sampling

each component of the length-n vector a independently at random from χ is denoted by a
$← χn. If

A is a probabilistic algorithm, then y
$← A(x) denotes running A on input x with fresh randomness

and storing the output in variable y, and y
$← AO(x) denotes running A with oracle access to

procedure O.

2 Lattice-based cryptography and the LWE problems

In a seminal 1996 work, Ajtai [1] first proposed a cryptographic construction (in that case, a hash
function) that relied on the hardness of a computational problem on lattices (the Short Integer
Solution (SIS) problem). A subsequent work by Ajtai and Dwork [2] presented a public key encryption
scheme based on another lattice problem. Concurrently, Hoffstein, Pipher, and Silverman [26]
created the NTRU public key encryption scheme with can be viewed as involving algebraically
structured lattices. A variety of research on the use of lattices in constructing cryptosystems
continued during that era, and a detailed chronology is outside the scope of this paper; see one of
the many surveys of lattice-based cryptography, such as Peikert’s [44].

2.1 The Learning with Errors problem

In 2005, Regev [46] introduced the learning with errors (LWE) problem, showed that LWE is related
to the hardness of a lattice problem (the Gap Shortest Vector Problem (GapSVP)), and gave a
public key encryption scheme based on LWE. Being a more abstract algebraic problem, LWE can
be easier to work with in terms of building cryptosystems, and a large amount of research into the
hardness of LWE and its use in cryptography has followed; again, see a survey such as [44] for a
detailed chronology.

The search learning with errors problem is like a noisy version of solving a system of linear
equations: given a matrix A and a vector b = As + e, find s.

Definition 1 (Search LWE problem). Let n, m, and q be positive integers. Let χs and χe be

distributions over Z. Let s
$← χns . Let ai

$← U(Znq ), ei
$← χe, and set bi ← 〈ai, s〉+ ei mod q, for
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i = 1, . . . ,m. The search LWE problem for (n,m, q, χs, χe) is to find s given (ai, bi)
m
i=1. In particular,

for algorithm A, define the advantage

Advlwe
n,m,q,χs,χe(A) = Pr

[
s

$← χns ; ai
$← U(Znq ); ei

$← χe;

bi ← 〈ai, si〉+ e mod q : A((ai, bi)
m
i=1) = s)

]
.

For appropriate distributions χs and χe, not only is it conjectured to be hard to find the secret
vector s, it is even conjectured that LWE samples (a, 〈a, s〉+ e) look independent and random: this
is the decision LWE problem.

Definition 2 (Decision LWE problem). Let n and q be positive integers. Let χs and χe be

distributions over Z. Let s
$← χns . Define the following two oracles:

• Oχe,s: a
$← U(Znq ), e

$← χe; return (a, 〈a, s〉+ e mod q).

• U : a
$← U(Znq ), u

$← U(Zq); return (a, u).

The decision LWE problem for (n, q, χs, χe) is to distinguish Oχ,s from U . In particular, for algorithm
A, define the advantage

Advdlwe
n,q,χs,χe(A) =

∣∣∣Pr(s
$← Znq : AOχe,s() = 1)− Pr(AU () = 1)

∣∣∣ .
Choice of distributions. The error distribution χe is usually a discrete Gaussian distribution of
width αq for “error rate” α < 1.

LWE was originally phrased involving a uniform distribution on the secret s (χns = U(Znq )).
Applebaum et al. [5] showed that the short secrets (or “normal form”) variant, in which χs = χe,
has a tight reduction to the original uniform secrets variant. In what follows, we use the short
secrets variant throughout, and abbreviate to a single error distribution χ (using shorthand notation
Advlwe

n,m,q,χ and Advdlwe
n,q,χ).

Difficulty. Difficulty of both search and decision LWE problems depends on the size of n, m, and
q, as well as the distributions χs and χe. Regev [46] showed that, for appropriate parameters, search
and decision LWE are worst-case hard assuming the (average case) hardness of a lattice problem.
In particular, he showed first that search-LWE is at least as hard as solving the worst-case lattice
problems GapSVPγ and SIVPγ (for a parameter γ depending on n and α) using a quantum reduction;
then that decision-LWE is at least as hard as the search version using a classical reduction. A
sequence of later results have improved various aspects (making the first reduction classical, not
quantum; handling more moduli); see Peikert’s survey [44, §4.2.2] for a list.

Extracting secret bits. The decision LWE problem effectively yields an element 〈a, s〉+ e ∈ Zq
that is indistinguishable from random. Parties using LWE to establish a shared secret for public key
encryption (like in Regev’s scheme) or key agreement (as we will see in the next section) will only
approximately agree on the same value modulo q, so they will have to apply some reconciliation
function and extracting a small number of bits (maybe even just 1 bit) from a single element of Zq.
In order to establish a multi-bit shared secret with LWE, the parties will hence need to send many

samples, which we can then think of in matrix form: a matrix A
$← Zm×nq , and an error e

$← χn, to
obtain b← As + e ∈ Zmq . This increases communication sizes m-fold, and requires approximately
O(mn log q) bits of communication to obtain an m-bit secret. To reduce communication sizes, one
could try to introduce some structure to the matrix A, for example making each row the cyclic shift
of the previous row. However, rather than working in matrix form, we can shift our representation
to a polynomial ring, leading us to the ring-LWE problem.
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2.2 The Ring Learning with Errors problem

In 2010, Lyubashevsky, Peikert, and Regev [34] introduced the ring-LWE problem. Let R =
Z[X]/〈Xn + 1〉, where n is a power of 2. Let q be an integer, and define Rq = R/qR, i.e.,
Rq = Zq[X]/〈Xn + 1〉. In other words, Rq consists of polynomials of degree at most n − 1, with
coefficients in Zq, and the wrapping rule that Xn ≡ −1 mod q. The search and decision ring-LWE
problems are analogues of the corresponding LWE problems, except with ring elements rather than
vectors.

Definition 3 (Search ring-LWE problem). Let n and q be positive integers. Let χs and χe be

distributions over Rq. Let s
$← χs. Let a

$← U(Rq), e
$← χe, and set b ← as + e. The search

ring-LWE problem for (n, q, χs, χe) is to find s given (a, b). In particular, for algorithm A define the
advantage

Advrlwe
n,q,χs,χe(A) = Pr

[
s

$← χs; a
$← U(Rq); e

$← χe; b← as+ e : A(a, b) = s
]
.

Again, for appropriate distributions χs and χe, not only is it conjectured to be hard to find the
secret s, it is even conjectured that ring-LWE samples (a, as+ e) look independent and random:
this is the decision ring-LWE problem.

Definition 4 (Decision ring-LWE problem). Let n and q be positive integers. Let χs and χe be

distributions over Rq. Let s
$← χs. Define the following two oracles:

• Oχe,s: a
$← U(Rq), e

$← χe; return (a, as+ e).

• U : a, u
$← U(Rq); return (a, u).

The decision ring-LWE problem for (n, q, χs, χe) is to distinguish Oχe,s from U . In particular, for
algorithm A, define the advantage

Advdrlwe
n,q,χs,χe(A) =

∣∣∣Pr(s
$← Rq : AOχe,s() = 1)− Pr(AU () = 1)

∣∣∣ .
Choice of distributions. The error distribution χe is usually a discretized Gaussian distribution
in the canonical embedding of R; for an appropriate choice of parameters, we can sample ring
elements from χe by sampling each coefficient of the polynomial independently from a related
distribution.

As with LWE, ring-LWE can be formulated using either a uniform secret (χs = U(Rq)) or with
short secrets (χs = χe), which has a tight reduction to the original secrets variant. In what follows,
we use the short secrets variant throughout, and abbreviate to a single error distribution χ (using
shorthand notation Advrlwe

n,q,χ and Advdrlwe
n,q,χ ).

Difficulty. Difficulty of both search and decision ring-LWE depends on the parameters n and q
and the distributions χs and χe. Lyubashevsky et al. [34] showed that search ring-LWE as hard
as quantumly solving approximate shortest vector problem on an ideal lattice in R; and then the
classical search-to-decision reduction applies.

Because of the additional structure present in ring-LWE, the choice of n and q requires greater
care than the unstructured LWE problem [45]. There is also the risk that the ring-LWE problem may
be easier than the LWE problem. Currently, the best known algorithms for solving hard problems in
ideal lattices [14, 29] are the same as those for regular lattices (ignoring small polynomial speedups);
and in some sieving algorithms, the ideal case enables one to save a small constant factor of time
or space [47, 11]. Very recently Cramer et al. [16] gave a quantum polynomial time algorithm
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algorithm for ideal-SVP with certain parameters, but this is not currently applicable to ring-LWE.
In summary, some view LWE as a more “conservative” security choice than ring-LWE, though there
is no appreciable security difference at present.

Extracting secret bits. The decision ring-LWE problem effectively yields a ring element that is
indistinguishable from random. Being an element of Rq = Zq[X]/〈Xn + 1〉, we have n coefficients
each of which is an element of Zq. As with LWE, cryptographic constructions using this will need
to reconcile approximately equal shared secrets, and thus can extract only a small number of bits
(maybe even just 1 bit) from each coefficient. But since there are n (independent-looking) coefficients,
one can extract n random-looking bits from a single ring element. Thus, one needs approximately
O(n log q) bits of communication to obtain an n-bit secret, a substantial reduction compared to
LWE. Thus, in practice, one must decide between the decreased communication of ring-LWE versus
the potentially more conservative security of LWE.

3 Key exchange protocols from LWE and ring-LWE

Regev [46] was the first to give a public key encryption scheme from the learning with errors problem,
and Lyubashevsky, Peikert, and Regev [33] were the first to give a public key encryption scheme
from ring-LWE. Like ElGamal public key encryption, both these schemes implicitly contain a key
encapsulation mechanism and then one-time-mask the KEM shared secret with (an encoded form
of) the message. Peikert [42] describes a corresponding approximate LWE key agreement protocol.
In 2010, Lindner and Peikert [31] gave an improved LWE-based public key encryption scheme, and a
ring-LWE analogue, and described how to view it as an approximate key agreement protocol. This
was followed by detailed LWE- and ring-LWE-based key agreement protocols by Ding et al. [19]
(including a single-bit reconciliation mechanism to obtain exact key agreement); a sketch of an
LWE-based key agreement scheme by Blazy et al. [8, Fig. 1, 2]; and detailed ring-LWE-based key
encapsulation mechanisms by Fujioka et al. [22, §5.2] and Peikert [43] (with an alternative single-bit
reconciliation mechanism). In addition to basic unauthenticated key exchange, there have been
works on using LWE to create password-authenticated key exchange [28] and using ring-LWE to
create authenticated key exchange [49] (though the security proof of the latter is questioned [24]).

In this section, we will examine two unauthenticated key agreement protocols in which this
paper’s first author was involved. Frodo [9], an LWE-based key exchange protocol, is an instantiation
of the Lindner–Peikert LWE approximate key agreement scheme using a generalization of Peikert’s
reconciliation mechanism in which multiple bits are extracted from a single element of Zq. BCNS15
[10], a ring-LWE-based key exchange protocol, is an instantiation of the key exchange scheme
corresponding to the KEM in the Lyubashevsky–Piekert–Regev public key encryption scheme from
ring-LWE using Peikert’s reconciliation mechanism.

3.1 Common tools: reconciliation

In both Frodo and BCNS15, the parties will establish an approximately equal shared secret, then
exchange some “hints” that allow them to perform a reconciliation operation on the approximately
equal shared secret to extract some secret bits that are, with high probability, the same for both
parties. The reconciliation technique of Ding et al. [19] sends a single bit “hint” for each key bit and
relies on the low-order bits of the shared secret; Peikert’s technique [43] also sends a single bit hint
but relies on the high-order bits of the shared secret. The explanation below generalizes Peikert’s
approach [43] to extract multiple bits.
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Let B ∈ N be the number of bits we aim to extract from one element of Zq. Assume B <
(log2 q)− 1. Let B = dlog2 qe−B. Let v ∈ Zq, represented canonically as an integer in [0, q). Define
the rounding function

b·e2B : Zq → Z2B : v 7→
⌊
2−Bv

⌉
mod 2B ,

where b·e : R→ Z rounds real number x to the closest integer. When q is a multiple of 2B, b·e2B
outputs the B most significant bits of (v+ 2B−1) mod q, thereby partitioning Zq into 2B intervals of
integers with the same B most significant bits (up to a cyclic shift of the values that centres these
intervals around 0).

Define the cross-rounding function

〈·〉2B : Zq → Z2 : v 7→
⌊
2−B+1v

⌋
mod 2 ,

where b·c : R→ Z takes the floor of the real number x. When q is a multiple of 2B+1, 〈·〉2B partitions
Zq into two intervals based according to their (B + 1)th most significant bit.

On input of w ∈ Zq and c ∈ {0, 1}, the reconciliation function rec2B (w, c) outputs bve2B , where
v is the closest element to w such that 〈v〉2B = c.

If Alice and Bob have approximately equal values v, w ∈ Zq, they can use the following process
to derive B bits that are, with high probability, equal. Suppose q is a multiple of 2B. Bob computes
c← 〈v〉2B and sends c to Alice. Bob computes k′ ← bve2B . Alice computes k ← rec2B (w, c).

Security of this technique follows from the following fact: if v ∈ Zq is uniformly random, then
bve2B is uniformly random given 〈v〉2B .

Correctness follows if v and w are sufficiently close. Namely, if |v − w (mod q)| < 2B−2, then
rec2B (w, 〈v〉2B ) = bve2B . Parameters must be chosen so that v and w are sufficiently close.

For our parameters in the ring setting, we will want to extract 1 bit from each element of
Zq, but q will not be a multiple of 2. Peikert suggested the following technique: Bob computes

v
$← dbl(v), where dbl : Zq → Z2q : x 7→ 2x−e, where e is sampled from {−1, 0, 1} with probabilities

p−1 = p1 = 1
4 and p0 = 1

2 . Bob computes c ← 〈v/2〉2 and sends c to Alice. Bob computes
k′ ← bv/2e2. Alice computes k ← rec2(2w, c).

For ring-LWE, these functions are extended from Zq to the ring Rq = Zq[X]/〈Xn+ 1〉 coefficient-
wise. For matrix forms of LWE, these functions can be extended to vectors component-wise.

3.2 Ring-LWE-based key exchange: BCNS15

Protocol. The BCNS15 protocol [10], based on the ring-LWE problem, is shown in Figure 1.
Alice and Bob exchange ring-LWE samples b = as+ e and b′ = as′ + e′. They can then compute an
approximately equal shared secret:

sb′ = sas′ + se′ ≈ sas′ + s′e = bs′ ∈ Rq = Zq[X]〈Xn + 1〉 .

From each coefficient of the approximately equal shared secret, they extract a single secret bit.

Security. Assuming the decision ring-LWE problem is hard for the parameters chosen, the BCNS15
key exchange protocol is a secure unauthenticated key exchange protocol. The argument follows
[31, 43] by using two applications of the decision ring-LWE assumption: first, on Alice’s computations
involving s (so b becomes independent from s), and second on Bob’s computations involving s′ (so b′

and v become independent from s′). This makes the approximately equal shared secret v uniformly
random from the adversary’s perspective, and as noted above the hint c reveals no information
about extracted key k′.

9



Public parameters

Decision ring-LWE parameters n, q, χ

a
$← U(Rq)

Alice Bob

s, e
$← χ

b← as+ e ∈ Rq
b−→ s′, e′

$← χ
b′ ← as′ + e′ ∈ Rq
e′′

$← χ
v ← bs′ + e′′ ∈ Rq
v

$← dbl(v) ∈ R2q

b′,c←− c← 〈v/2〉2 ∈ {0, 1}n
kA ← rec2(2b′s, c) ∈ {0, 1}n kB ← bv/2e2 ∈ {0, 1}n

Figure 1: BCNS15: Unauthenticated Diffie–Hellman-like key exchange from ring-LWE

Parameters. The BCNS15 protocol is instantiated with n = 1024 and q = 232 − 1. The error
distribution χ is a discrete Gaussian distribution; because n is a power of 2, this can be achieved
by sampling each coefficient from a discrete Gaussian DZ,σ with has DZ,σ(x) = 1

S e
−x2/(2σ2) where

S = 1 + 2
∑∞

k=1 e
−k2/(2σ2). With these parameters, the probability that reconciliation yields k 6= k′

is much less than 2−128. Total communication required for two parties to establish a shared secret
is 8,320 bytes.

Based on hardness estimates by Albrecht et al. [3], breaking the system with these parameters
would require 2163.8 operations on a classical computer with at least 294.4 memory usage. Assuming
a square-root speedup for quantum computers via Grover’s algorithm (though it is not known how
to achieve a full square-root speedup), this suggests at least 281.9 quantum security. Based on the
same difficulty estimates for the subsequent NewHope protocol [4], Alkim et al. list BCNS15 as
having 86-bit classical security and 78-bit quantum security.

Subsequent works. Alkim et al. [4] subsequently published the so-called “NewHope” protocol,
making several improvements to the BCNS15 protocol. NewHope uses different parameters and
a different error distribution (which was easier to sample), resulting in substantially improved
performance and smaller communication (3,872 bytes). NewHope also uses a pseudorandomly
generated a, rather than a fixed public parameter. In July 2016, Google announced that they
were deploying a two-year experiment in the alpha version of their Chrome web browser (called
“Canary”) that uses the NewHope key exchange protocol in a hybrid ciphersuite with elliptic curve
Diffie–Hellman [12]. Further improvements to NewHope have been given by several papers [25, 32].

3.3 LWE-based key exchange: Frodo

Protocol. The Frodo key exchange protocol [9], based on the LWE problem, is shown in Figure 2.
It uses a matrix form of the LWE problem: Alice uses m secrets s1, . . . , sm, represented as a matrix
S; similarly for Bob. Alice and Bob exchange matrix LWE samples B = AS+E and B′ = S′A′+E′.
They can then compute an approximately equal shared secret:

B′S = S′AS + S′E ≈ S′AS + SE′ = S′B ∈ Zm×mq .
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Public parameters

Decision LWE parameters n, q, χ; integer m

Alice Bob

seed
$← {0, 1}λ

A← PRF(seed) ∈ Zn×nq

S,E
$← χ(Zn×mq )

B← AS + E ∈ Zn×mq
b,seed−→ A← PRF(seed) ∈ Zn×nq

S′,E′
$← χ(Zm×nq )

B′ ← S′A + E′ ∈ Zm×nq

E′′
$← χ(Zm×mq )

V← S′B + E′′ ∈ Zm×mq
B′,C←− C← 〈V〉2B ∈ Zm×m

2B

k← rec2B (B′S,C) ∈ Zm2B k′ ← bVe2B ∈ Zm2B

Figure 2: Frodo: Unauthenticated Diffie–Hellman-like key exchange from LWE

From each entry of the approximately equal shared secret, they extract B secret bits. Frodo follows
NewHope’s idea of using a pseudorandomly generated A.

Security. Assuming the decision LWE problem is hard for the parameters chosen, and PRF is a
pseudorandom function, the Frodo key exchange protocol is a secure unauthenticated key exchange
protocol. A hybrid argument goes from the standard decision-LWE problem to a matrix form of it,
then the same argument as for BCNS15 above yields the indistinguishability of the session key.

Parameters. The Frodo paper contains several parameter sets, including a “recommended”
parameter set, which uses n = 752, q = 215, m = 8, and B = 4. The error distribution χ is
a concrete distribution specified in the paper, which is close in Renyi divergence to a rounded
continuous Gaussian distribution (but requires fewer bits to sample). With these parameters,
the probability that reconciliation yields k 6= k′ is 2−38.9. Total communication required for two
parties to establish a shared secret is 8,320 bytes. The claimed security level is 140 bits of security
against a classical adversary, and 130 bits against a quantum adversary. The paper also includes a
higher-security “paranoid” parameter set, which conjectures a certain lower bound on lattice sieving
for any adversary.

3.4 Performance of post-quantum key exchange

Table 1 (copied from [9]) shows the performance characteristics of several post-quantum key exchange
protocols:

• BCNS ring-LWE key exchange, C implementation [10];
• NewHope ring-LWE key exchange, C implementation [4];
• NTRU public key encryption key transport using parameter set EES743EP1, C implementation;2

and
• SIDH (supersingular isogeny Diffie–Hellman) key exchange, C implementation [15].

2https://github.com/NTRUOpenSourceProject/ntru-crypto
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Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security
(ms) (ms) (ms) A→B B→A classical quantum

RSA 3072-bit — 0.09 4.49 387 / 0∗ 384 128 —
ECDH nistp256 0.37 0.70 0.33 32 32 128 —

BCNS 1.01 1.59 0.17 4,096 4,224 86 78
NewHope 0.11 0.16 0.03 1,824 2,048 229 206
NTRU EES743EP1 2.00 0.28 0.15 1,027 1,022 256 128

Frodo Recomm. 1.13 1.34 0.13 11,377 11,296 144 130
Frodo Paranoid 1.25 1.64 0.15 13,057 12,976 177 161

SIDH 135 464 301 564 564 192 128

Table 1: Performance of standalone cryptographic operations, showing mean runtime in
milliseconds of standalone cryptographic operations, communication sizes (public key / messages)
in bytes, and claimed security level in bits. Table from [9]. ∗ In TLS, the RSA public key is
already included in the server’s certificate message, so RSA key transport imposes no additional
communication from server to client.

The table also includes non-quantum-secure algorithms at the 128-bit classical security level for
comparison: OpenSSL’s implementation of ECDH (on the nistp256 curve) and RSA with a 3072-bit
modulus. Results were measured on a single hardware hyper-thread on a 2.6GHz Intel Xeon E5
(Sandy Bridge); see [9] for details. Although some implementations included optimizations using
the AVX2 instruction set, the computer used for measurements did not support AVX2.

In the table, Alice0 denotes Alice’s procedure for constructing her outgoing message, and Alice1
is her procedure for processing Bob’s incoming message and deriving the shared secret.

The NewHope protocol has the best computational performance of the post-quantum key
exchange algorithms tested, even outperforming traditional RSA and ECDH. However, all structured
lattice schemes (ring-LWE and NTRU) have larger communication than RSA and ECDH, around
2-8 KiB round-trip. Unstructured lattice schemes (LWE) also achieve good performance, on the order
of 1 ms, but require even more communication, around 22 KiB round-trip. Supersingular isogeny
Diffie–Hellman has much smaller keys (1 KiB round-trip, not much larger than RSA 3072), but
orders of magnitude slower performance. (Note, however, that the AVX2 optimized implementation
of SIDH was an order of magnitude faster than its C implementation). No code-based post-quantum
protocol was included in the tests above. In particular, the implementation of Bernstein et al.’s
“McBits” high-speed code-based cryptosystem [6] was not publicly available at the time of writing,
but their paper reports speeds of 0.005ms (on a 3.4 GHz CPU) for decryption at the 128-bit quantum
security level, but at the cost of 216 KiB public keys.

These trade-offs leave no clear post-quantum winner: the smallest key sizes come from SIDH but
it has slow performance (though performance usually improves!); ring-LWE gives a decent tradeoff
with fast performance and not-too-big keys; LWE’s performance remains good, and avoids the use
of a structured lattice, but requires larger communication. Though these larger public keys may be
too big for embedded devices, it should be remembered that the average webpage is over 1 MB: if
we had to switch the Internet to post-quantum cryptography today, the communication costs from
post-quantum key exchange would not be much more than an extra emoticon on a webpage.
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3.5 From unauthenticated to authenticated key exchange

Both the BCNS15 and Frodo protocols are for unauthenticated key exchange: they assume the
adversary is passive. Of course in practice one must achieve security against an active network
adversary. Peikert [43] noted the challenges that are faced in securing LWE and ring-LWE based
protocols against an active adversary, and Fluhrer [21] described an explicit attack on ring-LWE
protocols that reuse ephemeral key shares against an active adversary. Peikert suggested the use of a
transform such as the Fujisaki–Okamoto transform [23] which converts a passively secure (IND-CPA)
key encapsulation mechanism (KEM) into an actively secure (IND-CCA) KEM. For integration with
TLS, there is also the possibility of using signatures in a signed-DH-like protocol to first authenticate
the keyshares; see [10].

4 Integrating post-quantum key exchange into TLS

All the post-quantum key exchange candidates explored in the previous section incur some penalty
(either slower computation, or bigger communication, or both) compared to existing RSA or elliptic
curve public key cryptography. It is therefore important to understand the impact of these penalties
in a practical setting. Both the BCNS15 and Frodo papers integrate the corresponding key exchange
scheme into the Transport Layer Security (TLS) protocol, the dominant protocol used securing
Internet communications. In particular, they create new TLS version 1.2 ciphersuites which use
traditional RSA or ECDSA certificates for signature, but use post-quantum key exchange to derive
a shared secret, and then continue to use standard TLS authenticated encryption constructions
(e.g., AES in GCM mode). (Due to the message flow in the TLS 1.2 handshake, the TLS server
plays the role of “Alice” in the key exchange, and the TLS client plays the role of “Bob”.) This is
achieved by modifying OpenSSL, a common open-source library for SSL/TLS, which is used by
applications such as the Apache httpd web server for securing web server communication.

Hybrid ciphersuites. The experiments involving post-quantum ciphersuites in TLS also included
hybrid ciphersuites, where the TLS handshake uses two key exchange algorithms: one post-quantum
algorithm, and one traditional algorithm (in this case, ECDH). While the use of two key exchange
algorithms does impact performance, it allows early adopters to retain the (current) security of
traditional algorithms like ECDHE while obtaining (potential) security against quantum computers:
since many post-quantum algorithms have had comparatively less cryptanalysis, there is an increased
chance that parameter sizes for post-quantum algorithms will evolve more rapidly over the next few
years in the face of new classical or quantum cryptanalytic advances. Interestingly, Google, in its
recent NewHope experiment in Chrome, decided to use solely hybrid ciphersuites [12].

Security. As noted above, BCNS15 and Frodo were shown to be secure unauthenticated key
exchange protocols, i.e., assuming a passive adversary. For security against an active adversary, we
showed in the BCNS paper [10] how to achieve the standard security notion for TLS (“authenticated
and confidential channel establishment” (ACCE) [27]) if the server signs both the client and server
key share. Note that this would require reordering some of the messages in TLS. An alternative, as
noted above, is to use a KEM transform to obtain an actively-secure key exchange protocol.

4.1 Performance of post-quantum key exchange in TLS

Table 2 (copied from [9]) shows the performance of a TLS-protected Apache web server using various
key exchange mechanisms and signature schemes. It measures:
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Ciphersuite Connections/second Connection time (ms) Handshake
Key exchange Signature 1B 10 KiB 100 KiB w/o load w/load size (bytes)

ECDHE nistp256
ECDSA 1187 1088 961 14.2 22.2 1,264
RSA 814 790 710 16.1 24.7 1,845

BCNS15
ECDSA 922 893 819 18.8 35.8 9,455
RSA 722 716 638 20.5 36.9 9,964

NewHope
ECDSA 1616 1351 985 12.1 18.6 5,005
RSA 983 949 771 13.1 20.0 5,514

NTRU EES743EP1
ECDSA 725 708 612 20.0 27.2 3,181
RSA 553 548 512 19.9 29.6 3,691

Frodo Recomm.
ECDSA 923 878 843 18.3 31.5 23,725
RSA 703 698 635 20.7 32.7 24,228

Hybrid ciphersuites

BCNS15+ECDHE
ECDSA 736 728 664 23.1 37.7 9,595
RSA 567 559 503 24.6 40.2 10,177

NewHope+ECDHE
ECDSA 1095 1017 776 16.5 25.2 5,151
RSA 776 765 686 18.1 28.0 5,731

NTRU+ECDHE
ECDSA 590 578 539 22.5 34.3 3,328
RSA 468 456 424 24.2 36.8 3,908

Frodo Rec.+ECDHE
ECDSA 735 701 667 22.9 36.4 23,859
RSA 552 544 516 24.5 39.9 24,439

Table 2: Performance of Apache httpd web server, measured in connections per second,
connection time in milliseconds, and handshake size in bytes. Table from [9]. All TLS ciphersuites
used AES256-GCM authenticated encryption with SHA384 in the MAC and KDF. Note that different
key exchange methods are at different security levels; see Table 1 for details.

• throughput (connections/second): number of connections per second at the server before server
latency spikes, measured with requests of different payload sizes (1B, 10 KiB, 100 KiB);
• handshake latency (milliseconds): time from when client sends first TCP packet till client

receives first application data packet, measured on an unloaded server and a loaded server
(with sufficiently many connections to achieve 70% CPU load).

Performance was measured on a 4-CPU server with the same CPU as in Section 3.4. See [9] for the
detailed methodology.

Unsurprisingly, the additional overhead of other cryptographic and network operations in a TLS
connection mutes the performance differences between key exchange protocols. For example, while
the standalone performance of NewHope is 9× better than that of Frodo recommended, throughput
of a NewHope-based ciphersuite is only 1.75× better than Frodo recommended when the server
returns 1 byte of application data, and the gap narrows further to just 1.12× when the server
returns 100 KiB of application data. Similarly, the latency of a Frodo-based ciphersuite is only 1.5×
slower than a NewHope-based ciphersuite. When hybrid ciphersuites are used, the performance
difference between slow and fast post-quantum ciphersuites narrows even further.
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Component New files Existing files Lines of code∗

Core ring-LWE library 6 0 896

Ring-LWE “wrapper” for OpenSSL 6 5 1229

SSL integration 0 12 914

Table 3: Source code changes to add BCNS15 ring-LWE key exchange to OpenSSL.
∗ Lines of code excludes Makefiles and automatically generated files, but includes comments and
whitespace, and counts both lines added and deleted. Calculated from https://github.com/

dstebila/openssl-rlwekex/commit/f80719bf.

5 Interlude: programming is hard

In the BCNS15 work on ring-LWE-based key exchange, we did a performance evaluation at two
levels: the standalone cryptographic operations of the ring-LWE key exchange protocol, and its
performance when run in the TLS protocol. The first is a fairly common practice in cryptographic
research: implement your algorithms in C, then use some cycle counting or microsecond-accurate
timing code to determine the runtime of your algorithms.

Evaluating performance in the TLS protocol is less common due in part to the difficulty of
doing so: either one has to implement a network protocol from scratch (which is painful and usually
not the main purpose of the research), or integrate the cryptographic algorithms into an existing
cryptographic library, such as OpenSSL. These libraries are often quite complex. When we wanted
to add our BCNS15 ring-LWE key exchange protocol to OpenSSL for testing purposes, we had
to first “wrap” our core ring-LWE library inside of OpenSSL’s data structures inside the crypto

directory, then modify OpenSSL’s ssl directory to make use of those new data structures. Table 3
shows the number of files and lines of code that were added or changed. While the core ring-LWE
library consisted of only 6 (standalone) C files totalling just under 900 lines of code, integrating it
into OpenSSL required touching 23 files and changing or adding another 2143 lines of code.

For the Frodo work on LWE-based key exchange, we again wanted to evaluate the performance of
our algorithms both in a standalone setting and in the context of TLS, but we also wanted to compare
with other post-quantum key exchange candidates. Writing 2100 lines of wrapper/integration code
for each algorithm we wanted to add was an unappealing prospect. For the Frodo project, we
developed an intermediate API that allowed us to more easily integrate different post-quantum
key exchange algorithms into OpenSSL for performance comparison. This not-publicly-released
intermediate API was the predecessor of and partial motivation for some of the features added to
the Open Quantum Safe framework.

6 Open Quantum Safe: a software framework for post-quantum
cryptography

The goal of our Open Quantum Safe (OQS) project (https://openquantumsafe.org) is to support
the development and prototyping of quantum-resistant cryptography. OQS consists of two main
lines of work: liboqs, an open source C library for quantum-resistant cryptographic algorithms; and
prototype integrations into protocols and applications, including the widely used OpenSSL library.

As an example of where the OQS framework can assist with the grand challenge of moving
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quantum-resistant cryptography towards reliable widespread deployment, consider a small- or
medium-sized enterprise that understands the need to integrate quantum-resistant cryptography
into its products. Perhaps their products protect information that requires long-term confidentiality.
Perhaps their products will be deployed in the field for many years with no easy opportunity for
changing the cryptographic algorithms later. Or perhaps they or their customers are worried about
the small but non-negligible chance that today’s algorithms will be broken, by quantum computers
or otherwise, much earlier than expected.

Whatever their reason for wishing to integrate quantum-safe cryptography into their products
sooner rather than later, this would not be an easy path for them to take. In-house implementation of
quantum-safe primitives requires advanced specialized expertise in order to understand the research
literature, choose a suitable scheme, digest the new mathematics, choose suitable parameters, and
develop robust software or hardware implementations. This is an enormous, expensive, and risky
endeavour to undertake on one’s own, especially for a small- or medium-sized enterprise.

Commercially available alternatives, especially back in 2014 when this project started taking
shape, were few, and also potentially problematic from a variety of perspectives: cost, patents,
transparency, maintenance, degree of external scrutiny, etc.

Companies who would like to offer a quantum-safe option today do not have an easy or robust
path for doing so.

OQS gives such organizations the option of prototyping an available quantum-resistant algorithm
in their applications. Since these are still largely experimental algorithms that have not yet received
the intense scrutiny of the global cryptographic community, our recommendation is to use one of
the available post-quantum algorithms in a “hybrid” fashion with a standard algorithm that has
received intense scrutiny with respect to classical cryptanalysis and robust implementation.

Since we fully expect that ongoing developments and improvements in the design, cryptanalysis,
and implementation of quantum-safe algorithms, OQS is designed so improvements and changes in
the post-quantum algorithm can be adopted without major changes to application software.

Organizations who do not wish or need to use open source in their products can still benefit
from:

• reference implementations that will guide them in their own implementations
• benchmark information that will guide their choice of algorithm
• the ability to test alternatives in their products before deciding which algorithms to choose.

OQS was thus designed with the goal of both facilitating the prototyping and testing of quantum-
resistant algorithms in a range of applications, and of driving forward the implementation, testing,
and benchmarking of quantum-resistant primitives themselves.

The high-level architecture of the OQS software project is shown in Figure 3.

6.1 liboqs

liboqs (https://github.com/open-quantum-safe/liboqs) provides a common interface for key
exchange and digital signature schemes, as well as implementations of a variety of post-quantum
schemes. Some implementations are based on existing open source implementations, either adapting
the implementation or putting a thin “wrapper” around the implementation. Other implementations
have been written from scratch directly for the library. As of writing, liboqs includes key exchange
based on:

• ring-LWE using the BCNS15 protocol (adaptation of existing implementation) [10];
• ring-LWE using the NewHope protocol (wrapper around existing implementation) [4];
• LWE using the Frodo protocol (adaptation of existing implementation) [9];
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Figure 3: Architecture of the Open Quantum Safe project. ∗ denotes future plans.

• error correcting codes – quasi-cyclic medium-density parity-check codes using the Niederreiter
cryptosystem (new implementation).

liboqs also includes common routines available to all liboqs modules, including a common random
number generator and various symmetric primitives such as AES and SHA-3.

liboqs includes a benchmarking program that enables runtime comparisons of all supported
implementations. The library and benchmarking program build and have been tested on Mac OS
X 10.11.6, macOS 10.12, and Ubuntu 16.04.1 (using clang or gcc), and Windows 10 (using Visual
Studio).

6.2 Application/protocol integrations

The OQS project also includes prototype integrations into protocols and applications. Our first
integration is into the OpenSSL library,3 which is an open source cryptographic library that provides
both cryptographic functions (libcrypto) and an SSL/TLS implementation (libssl). OpenSSL
is used by many network applications, including the popular Apache httpd web server and the
OpenVPN virtual private networking software.

Our OpenSSL 1.0.2 fork (https://github.com/open-quantum-safe/openssl) integrates post-
quantum key exchange algorithms from liboqs into OpenSSL’s speed command, and provides
TLS 1.2 ciphersuites using post-quantum key exchange based on primitives from liboqs. For
each post-quantum key exchange primitive supported by liboqs, there are ciphersuites with AES-
128 or AES-256 encryption in GCM mode (with either SHA-256 or SHA-384, respectively), and
authentication using either RSA or ECDSA certificates. (We use experimental ciphersuite numbers.)

Each of these four ciphersuites is also mirrored by another four hybrid ciphersuites which use
both elliptic curve Diffie–Hellman (ECDHE) key exchange and the post-quantum key exchange
primitive.

Our OpenSSL integration also includes generic ciphersuites. liboqs includes interfaces for each
key exchange algorithm so it can be selected by the caller at runtime, but it also includes a generic

3https://www.openssl.org
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interface that can be configured at compile time. Our OpenSSL integration does include ciphersuites
for each individual key exchange algorithm in liboqs, but it also includes a set of ciphersuites that
call the generic interface, which will then use whatever key exchange algorithm was specified at
compile time. This means that a developer can add a new algorithm to liboqs and immediately
prototype its use in SSL/TLS without changing a single line of code in OpenSSL, simply by using
the generic OQS ciphersuites in OpenSSL and compiling liboqs to use the desired algorithm.

6.3 Case study: adding NewHope to liboqs and OpenSSL

As mentioned earlier, one of the goals of the Open Quantum Safe project is to make it easier to
prototype post-quantum cryptography. It should be easy to add a new algorithm to liboqs, and
then easy to use that algorithm in an application or protocol that already supports liboqs.

Recently, we added the NewHope ring-LWE-based key exchange to liboqs and our OpenSSL
fork. It is interesting to compare the amount of work required to add NewHope to liboqs and our
OpenSSL fork with the figures in Table 3 on adding BCNS15 directly to OpenSSL.

In liboqs, the wrapper around NewHope is 2 new files, totalling 163 lines of code, and requires 5
lines of code to be changed in 2 other files (plus changes in the Makefile).

As noted above, liboqs includes a “generic” key exchange method which can be hard-coded at
compile time to any one of its implementations, and our OpenSSL fork already includes a “generic
OQS” key exchange ciphersuite that calls liboqs’ generic key exchange method. Thus, once NewHope
has been added to liboqs, it is possible to test NewHope in OpenSSL with zero changes to the
OpenSSL fork via the generic key exchange method and recompiling. However, to explicitly add
named NewHope ciphersuites to OpenSSL, we are able to reuse existing data structures, resulting
in a diff that touches 10 files and totals 222 lines of code. Moreover, the additions can very easily
follow the pattern from previous diffs,4 making adding a new OQS-based ciphersuite a 15-minute
job.

7 Conclusion and outlook

The next few years will be an exciting time in the area of post-quantum cryptography. With the
forthcoming NIST post-quantum project, and with continuing advances in quantum computing
research, there will be increasing interest from government, industry, and standards bodies in
understanding and using quantum-resistant cryptography. Lattice-based cryptography, in the form
of the learning with errors and the ring-LWE problems, is particularly promising for quantum-
resistant public key encryption and key exchange, offering high computation efficiency with reasonable
key sizes. More cryptanalytic research will be essential to increase confidence in any standardized
primitive. Since each post-quantum candidate to date has trade-offs between computational efficiency
and communication sizes compared to existing primitives, it is also important to understand the
how applications and network protocols behave when using different post-quantum algorithms. The
Open Quantum Safe project can help rapidly compare post-quantum algorithms and prototype
their use in existing protocols and applications, and experiments like Google’s use of NewHope in
its Chrome Canary browser will give valuable information about how post-quantum cryptosystems
behave in real-world deployments.

For cryptographers interested in designing new public key encryption, digital signature schemes,
and key exchange protocols—for cryptanalysts looking to study new mathematical problems—

4https://github.com/open-quantum-safe/openssl/commit/cb91c708 and https://github.com/

open-quantum-safe/openssl/commit/3a04b822
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for cryptographic engineers building new systems—and for standards bodies preparing for the
future—exciting times lie ahead!
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