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Abstract

We consider an investor who maximizes portfolio’s expected returns conditioned on the

occurrence of a systemic event: financial system return being at, or at most at, its VaR level

and portfolio’s returns being below the CoVaR level. We obtain a closed-form solution to the

portfolio selection problem, and show how VaR and CoVaR quantiles control, respectively, the

relative importance of “portfolio–system correlation” and “portfolio variance”. Our empirical

analysis demonstrates that the investor attains a higher Sharpe ratio, compared to well known

benchmark portfolio criteria, during times of market downturn. Portfolios that perform best in

adverse market conditions are less diversified and concentrate on few stocks whose correlation

with the financial system is low.
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JEL classification: G01, G11, G20, G28

1 Introduction

The balance between risk and return has been at the center of portfolio construction since the

seminal work of Markowitz (1952). The asset allocation literature has primarily focused on a firm’s

individual risk. The global 2007–2009 financial crisis has highlighted the importance of accounting

for systemic events, i.e., extreme form of risks that can have severe consequences on the financial
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system. Important studies that identify and measure systemic risk of financial institutions include

Adrian and Brunnermeier (2016), Brownlees and Engle (2017), and Acharya et al. (2012). The

central question we study in this paper is: how to construct portfolios that perform well in the face

of systemic events?

We consider portfolio returns conditioned on a systemic event which corresponds to the real-

ization of an extremely adverse market outcome. The investor makes his portfolio decisions taking

into account the state of the financial system (”system” hereafter) defined as the portfolio of all

financial institutions. We measure the tail risk using two measures: VaR and CoVaR. The VaR of

the system is defined as the most adverse change of system returns at some pre-specified level of

confidence, while CoVaR is the VaR of the portfolio conditioned on the system being at (or below)

its VaR level. The goal of our investor is to maximize the expected portfolio returns conditioned

on (i) the system being at (or below) its VaR level, and (ii) the portfolio returns being below their

CoVaR level. In other words, we seek the portfolio that performs best in a low return environment

and when the system is in distress. In the portfolio optimization problem, we consider both the

original CoVar formulation proposed by Adrian and Brunnermeier (2016), which conditions on

the system being at its VaR level, and the modified version of Girardi and Ergun (2013), which

conditions on the event that the system is at most at its VaR level. We refer to the former as the

optimistic case, and to the latter as the pessimistic case. This is because in the latter approach the

investor considers more extreme scenarios of systemic events, that is, when the system returns are

worse than their VaR level.

There are several contributions in our efforts. First, under the joint normality assumption on

portfolio and system returns we obtain closed-form expressions for the investor’s portfolio problem.

In the pessimistic case, we show that our investor solves an optimization problem that resembles

a traditional mean–variance optimization, with the important difference that the risk-aversion pa-

rameter is not constant but rather depends nonlinearly on the correlation between the investor’s

portfolio and the system. Our solution technique for solving the optimization problem relies on

a Taylor series expansion that converts the non-linear optimization problem into a set of simpler

problems, and a fixed point iteration to determine which problem from the set admits a solution

that coincides with that of the original optimization problem (see Section 2.2 for the details). We

establish the following mutual fund separation result: any optimal portfolio with a given expected
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return, variance, and covariance with the system can be replicated by only three appropriately

chosen optimal portfolios. In addition, we show that when the assets in the portfolio are uncor-

related with the system, the optimal portfolios are mean–variance efficient. Second, we provide

an economic explanation for the main drivers behind the investor’s portfolio selection. We show

that the VaR and CoVaR quantile parameters determine the weights assigned to portfolio–system

correlation and portfolio variance, respectively, in the investor’s objective function. We prove that

when the standard deviation of the portfolio increases, portfolio returns become more sensitive

to the correlation of the portfolio with the system. This result can be intuitively understood as

follows: when the variance of the portfolio is large, the downside risk is large if the portfolio is

highly correlated with the system (portfolio returns are bounded above by CoVaR and negative

portfolio returns become more likely).

We assess the performance of the proposed methodology on the Canadian and US stock markets.

We choose the constituents of the S&P500 Financials Index as the portfolio components in the US

market, and the constituents of the S&P/TSX Capped Financial Index as those for the Canadian

market. We consider the time period from January 4, 2000 until October 1, 2018, hence covering

the global 2007-2009 financial crisis when noticeable systemic events occurred. We use the GARCH

Dynamic Conditional Correlation (GARCH–DCC) model (see Engle (2002, 2009)) to model the

joint return dynamics of the stocks and the system, which we proxy by the MSCI World Index.

We compare our portfolio criteria with two well known benchmarks, the global Minimum Variance

(MV) and 1/n portfolios (see DeMiguel et al. (2009)).1 The out-of-sample analysis of portfolios’

Sharpe ratios reveals that our optimal portfolio outperforms these benchmarks at times of market

downturns. We also find that the optimal portfolio is less diversified than the MV and 1/n portfolios.

These results can be intuitively explained as follows: portfolios that behave well during crisis periods

tend to invest on few stocks that have relatively small correlation with the system.2

Our paper contributes to a rather scarce literature on (C)VaR-based portfolio selection. Alexan-

der and Baptista (2002) consider the problem of minimizing an investor’s criterion that trades off

1The global Minimum Variance (MV) portfolio is the portfolio that one obtains by minimizing portfolio variance
without any restrictions on portfolio expected return (the portfolio with the smallest variance in the Markowitz
portfolio selection problem). The 1/n portfolio is the strategy that invests equally on each stock of the portfolio.

2These findings are reminescent of those in the literature on systemic risk in financial networks (see for example,
Acemoglu et al. (2015) and Capponi el al. (2016)). They show that a higher concentration of interbank liabilities
may be socially preferable to a well diversified interbanking network if the financial system experiences a large shock.
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expected return with value at risk, and characterize the mean-VaR efficient set. Alexander and

Baptista (2004) extend their earlier work to analyze the conditions under which a CVaR constraint

is more effective than the VaR constraint as a risk management tool. Rockafellar and Uryasev

(2000) study the optimal portfolio selection problem in which the CVaR is the risk minimization

criterion. Biglova et al. (2014) study a portfolio selection problem that accounts for systemic risk

by optimizing the average portfolio loss when all assets in the portfolio are distressed, i.e., below

their individual VaR levels. Unlike Biglova et al. (2014), we obtain a closed-form solution for the

portfolio problem and exploit its representation to obtain insights on the role played by the VaR and

CoVaR quantile parameters. None of the above surveyed papers explicitly incorporates systemic

risk in portfolio selection and (C)VaR is evaluated only for the portfolio, without accounting for the

state of the financial system. In this respect, it is important to recognize that poor performance

of a given portfolio (which could be industry specific) does not necessarily imply poor state of the

broad economy.

The rest of the paper is organized as follows. In Section 2 we solve the portfolio selection

problem: when the system is assumed to be at its VaR level (Section 2.1) and when the system is

at most at its VaR level (Section 2.2). In Section 3 we discuss the relation of our framework to the

mean–variance analysis. In Section 4, we assess the empirical performance of our model on equity

data from the Canadian and the US market. Section 5 concludes. Proofs of technical results are

deferred to the appendix.

2 Portfolio Selection Under Systemic Risk

We formulate and study the optimization problem of an investor, who accounts for systemic events

in his portfolio construction. In Section 2.1, we consider the situation in which the systemic event

occurs when the financial system is at its VaR level (optimistic case). In Section 2.2, we analyze

the situation in which the systemic event occurs when the financial system is below its VaR level

(pessimistic case). We derive the optimal asset allocation for an investor who maximizes the

expected returns on his portfolio, conditional on the systemic event and on the portfolio returns

being below their CoVaR levels. We assume that there exists no risk-free asset, and there are n ≥ 2

risky assets with stochastic rates of return r = (r1, ..., rn)T. Before proceeding further with the
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analysis, we introduce notation used throughout the paper.

Notation. The vector of expected rates of return is denoted by µ = E[r], and we use Σ =

E
[
(r − µ)(r − µ)T

]
to denote the variance–covariance matrix of the rates of return. We use w =

(w1, ..., wn)T to denote the vector of weights, i.e., wi is the proportion of wealth invested in asset

i, thus implying that
n∑
i=1

wi = 1. Let Rp = wTr and µp = wTµ denote, respectively, the portfolio’s

rate of return and portfolio’s expected rate of return. Then the variance of portfolio returns is

given by σ2
p = wTΣw. We use Rm to denote the return on the system. We denote by µm and

σm, respectively, the expected return and standard deviation of the return on the system. We

use σ to denote the column vector of covariances of each asset with the system. φ(·) denotes the

probability density function (pdf) of a standard Gaussian, and Φ(·) the cumulative distribution

function (cdf) of a standard Gaussian. 0 and 1 are column vectors of zeros and ones, respectively,

whose dimension is understood from the context.

2.1 System is at its VaR level

The system’s VaR is defined as the value V aRqm such that

P (Rm ≤ V aRqm) = qm, (2.1)

where qm is the quantile level. The lower qm, the smaller the value of V aRqm . Following Adrian

and Brunnermeier (2016), we define the CoVaR of a portfolio, denoted by CoV aRqp , as

P
(
Rp ≤ CoV aRqp

∣∣∣Rm = V aRqm

)
= qp, (2.2)

where Rp is the return on the portfolio and qp the quantile level. The lower qp, the smaller the

value of CoV aRqp . In plain words, CoVaR is defined as the VaR of the portfolio conditional on

the financial system being in distress. Hence, CoVaR addresses the question of what portfolios are

most exposed to a financial crisis.

Assumption 1 Because our focus is on stressed state of the economy, we assume throughout the

paper that qm, qp < 0.5, i.e., the portfolio and system returns are below their median value.

From the investor’s perspective, it is desirable to construct a portfolio that performs well when
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the entire financial system is in a downturn. To immunize a given portfolio against market down-

turns, we incorporate systemic risk directly in the portfolio optimization procedure. The perfor-

mance criterion of the investor is the co-expected returns defined as

CoER= = E
[
Rp

∣∣∣Rp ≤ CoV aRqp , Rm = V aRqm

]
. (2.3)

We emphasize that in (2.3) we condition on the event of low portfolio returns (
{
Rp ≤ CoV aRqp

}
)

and stressed market conditions ({Rm = V aRqm}). We graphically illustrate the portfolio returns

under the specification (2.3) in Figure 1.

Figure 1: Returns on which the conditioning used in the definition of CoER= is applied. For a given
probability distribution of returns on the system and portfolio (grey), we consider only those returns
that correspond to stressed scenarios (red): portfolio returns are below CoVaR (Rp ≤ CoV aRqp)
and the system returns are at their VaR level (Rm = V aRqm).

In words, CoER= estimates the expected returns in a low return environment when the overall

system is in distress (system is at its VaR level). Thus, the portfolio selection problem can be

stated as3

max
w

CoER= (P1)

s.t. wT1 = 1,

By solving (P1) we find the portfolio that performs well when the system is at its VaR level and

portfolio’s returns are below CoVaR.

3One can additionally impose a constraint on the unconditional expected portfolio returns, that is, enlarge the set
of constraints in (P1) with µT1 = µp. The problem can still be solved in closed form.
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To solve the portfolio selection problem (P1), we first obtain a closed-form expression for

CoER=. Using such a representation, we show that the quantile parameters qp and qm determine,

respectively, the weights that the investor assigns to the portfolio variance and portfolio–system

correlation. We make the following assumption throughout the paper:

Assumption 2 The joint portfolio and system returns (Rp, Rm) ∼ BN (µp, µm, σp, σm, ρ), where

BN denotes the bivariate Gaussian distribution, µp and µm are, respectively, the expected portfolio

and system return, σp and σm are, respectively, the standard deviation of the portfolio and system

return, and ρ is the correlation between portfolio and system returns.

Aside from analytical tractability, the above assumption allows us to obtain clear economic in-

tuitions for the results. Notably, we obtain a closed-form solution for the optimal portfolio, and

analytically compare it with well-known portfolio selection techniques, such as the mean–variance

and the 1/n portfolio, that do not account for systemic risk.

Proposition 1 Fix a vector w of weights of each asset in the portfolio. Then, under Assumption 2

we have

CoER= = wTµ︸︷︷︸
Portfolio
Return

+
Φ−1(qm)

σm
wTσ︸︷︷︸

Portfolio-System
Covariance

−
φ
(
Φ−1(qp)

)
qp

√
wTΣw︸ ︷︷ ︸
Portfolio
Variance

− 1

σ2
m

(wTσ)
2
, (2.4)

where qm and qp are the quantile levels used in the definition of VaR and CoVaR, respectively (see

(2.1) and (2.2)), and σ is the column vector of covariances of each risky asset with the system.

Moreover, the following holds

dCoV aRqp
dρ

< 0 if and only if
ρ√

1− ρ2
<

Φ−1(qm)

Φ−1(qp)
. (2.5)

Notice that CoER= only depends on the first two moments, which follows from the fact that

joint returns are Gaussian. CoER= consists of three components: expected portfolio returns,

portfolio–system covariance, and portfolio variance.

The parameters qm and qp allow the investor to balance the significance of these three compo-

nents, relative to one another, in the portfolio’s CoER=. The parameter qm controls the weight
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that the investor assigns to the covariance between portfolio and system returns when evaluat-

ing portfolio’s CoER=. Small qm implies a large weight (i.e., large Φ−1(qm) in absolute terms)

given to the portfolio’s covariance with the system: if qm is small, the investor considers more

adverse scenarios of system returns and, consequently, he dislikes a portfolio whose returns have

high positive correlation with the system. Since in most practically relevant cases qm < 0.5, and

thus Φ−1(qm) < 0, investors will prefer portfolios that are negatively correlated with the system

because, ceteris paribus, such portfolios have larger CoER=. The parameter qp controls the weight

that the investor assigns to portfolio variance. It follows from (2.4) that the investor is able to

define relative significance of the variance only to a certain extent as the weight
φ(Φ−1(qp))

qp
is multi-

plying the difference between portfolio variance and squared portfolio–system covariance (divided

by σ2
m), not the portfolio variance per se. Nonetheless, we can interpret

φ(Φ−1(qp))
qp

as the weight

that defines the relative significance of the variance, if we fix the covariance of the portfolio with

the system. If qp is small, the investor assigns a large weight to the portfolio variance (see the

Appendix for the proof of the inequality d
dqp

(
φ(Φ−1(qp))

qp

)
< 0), implying that he is less tolerant

against adverse portfolio returns: because these returns are bounded from above by CoV aRqp , large

portfolio variance implies large downside risk in the sense that low portfolio returns become more

likely. The fact that CoV aRqp can increase with the correlation parameter ρ > 0 may be explained

as follows. The value of CoV aRqp depends on mean and variance of conditional portfolio returns

(see Eq.(A.3) in the Appendix)

Rp|Rm = V aRqm ∼ N
(
µp + ρσpΦ

−1(qm), σ2
p(1− ρ2)

)
.

Clearly, a decrease in mean implies a decrease in CoV aRqp , whereas a decrease in variance implies

an increase in CoV aRqp (see (2.2)). Since both the mean and the variance of conditional returns

Rp|Rm = V aRqm decrease with the correlation parameter ρ, the sensitivity of CoV aRqp to ρ

depends on which force dominates. On the one hand, when ρ is low the sensitivity of the mean to

an increase in ρ is higher, and CoV aRqp decreases. On the other hand, if ρ is high the sensitivity

of variance to an increase in ρ is higher, and CoV aRqp increases. If ρ ≈ 1, we expect the variance

effect to dominate because the portfolio return Rp becomes very close to the constant system return

Rm = V aRqm (the conditioning event is Rm = V aRqm). In financial terms, as ρ approaches one,
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the uncertainty regarding portfolio return Rp vanishes.

The optimal portfolio that maximizes CoER= is given in the following proposition.

Proposition 2 Under Assumption 2, the portfolio that maximizes CoER= is given by

w∗ =
Σ̂−11

1TΣ̂−11
− 1√

(λ2 −∆TQ−1∆) (1TΣ̂−11)

 (Q−1)T∆

−1TQ−1∆


provided that

λ >
√

∆TQ−1∆, (2.6)

where

λ =
φ
(
Φ−1(qp)

)
qp

, Σ̂ = Σ− 1

σ2
m

σσT.

and the expressions of Q and ∆ are given by (A.7) in the Appendix.

The technical condition (2.6) guarantees that the portfolio w∗ maximizing CoER= is bounded.

If this condition is violated, it becomes possible to construct a portfolio with infinitely high expected

return, as illustrated in the following example.

Example 1 Consider a portfolio consisting of two assets, and assume that expected returns, the

covariance of the assets with the system, and the correlation matrix are given by

Asset 1 Asset 2

µ = (0.280 0.080)T,

Asset 1 Asset 2

σ = (0.035 0.029)T,

Asset 1 Asset 2 System
1.000 0.550 0.750

0.550 1.000 0.660

0.750 0.660 1.000

 .

Assume that the variances of the assets and of the system are respectively given by σ1 = 0.036, σ2 =

0.033, and σ2
m = 0.059. The portfolio that maximizes CoER= is then

Asset 1 Asset 2

w∗ = (0.748 0.252)T.
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If the correlation of the asset 1 with the system were to decrease from 0.750 to 0.100, then

condition (2.6) is no longer satisfied, and the investor finds it optimal to hold a very large long

position in the first asset. This investment strategy allows him to simultaneously increase portfolio

expected returns and decrease the portfolio correlation with the system, a desirable outcome in

periods of market downturns.4

2.2 System is at most at its VaR Level

In this section, we account for more severe systemic events when selecting the optimal portfolio.

Such a higher severity is captured through a generalization of the CoVaR measure proposed by

Girardi and Ergün (2013). In this modified CoVaR, the conditioning event is a more extreme

market downturn. We condition on Rm ≤ V aRqm rather than Rm = V aRqm , that is,

P
(
Rp ≤ CoV aRqp

∣∣∣Rm ≤ V aRqm) = qp. (2.7)

Hence, losses that are farther out in the tail of the distribution, i.e. those beyond V aRqm , are

accounted for. We define the co-expected return as

CoER≤ = E
[
Rp

∣∣∣Rp ≤ CoV aRqp , Rm ≤ V aRqm] ,
where CoV aRqp is defined by Eq. (2.7). Figure 2 graphically illustrates system returns upon which

we condition.

Similarly to CoES=, CoER≤ estimates the expected returns in a low return environment when

the system is in distress (system is at most at its VaR level). Thus, the portfolio selection problem

can be stated as

max
w

CoER≤ (P2)

s.t. wT1 = 1.

In other words, the optimal portfolio that solves (P2) is expected to perform well when the system

4To guarantee that Assumption (2.6) is satisfied, one can impose additional constraints in problem (P1) such as
limiting the amount of short-selling allowed.
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Figure 2: Returns on which the conditioning event used in the definition of CoER≤ is applied. For
a given probability distribution of returns on the system and portfolio (in grey), we consider only
those returns that correspond to stressed scenarios (in red): portfolio returns are below CoVaR
(Rp ≤ CoV aRqp) and the system returns are at most at their VaR level (Rm ≤ V aRqm).

is at most at its VaR level and portfolio’s returns are below CoVaR. The following proposition

derives a closed-form expression for CoER≤.

Proposition 3 Under Assumption 2, we have that5

CoER≤ = µp − λ(ρ; qm, qp)σp, (2.8)

where λ(ρ; qm, qp) is given by

λ(ρ; qm, qp) =
1

qmqp

(
φ(η1)Φ

(
η2 − ρη1√

1− ρ2

)
+ ρφ(η2)Φ

(
η1 − ρη2√

1− ρ2

))
. (2.9)

Above, we have defined η1 :=
CoV aRqp−µp

σp
, and η2 :=

V aRqm−µm
σm

. In addition, it holds

dCoV aRqp
dρ

< 0,
dλ

dρ
=

1

qmqp
φ(η2)Φ

(
η1 − ρη2√

1− ρ2

)
> 0. (2.10)

We highlight here the important properties of CoER≤. The function λ can be regarded as the

weight that the investor assigns to portfolio standard deviation σp – the measure of riskiness of the

portfolio. It then follows from (2.10) that when systemic risk is accounted for, this weight increases

with the portfolio–system correlation ρ (dλ
dρ > 0). This can be explained as follows. Since by

5To make the notation less cumbersome, we do no explicitly highlight the dependence of the correlation ρ on the
portfolio weights w. However, it should be understood that ρ = ρ(w).
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construction of CoER≤ the system is assumed to be stressed, higher correlation with the system

implies larger potential losses for the portfolio whose downside is unbounded, but the upside is

bounded by CoV aRqp . This in turn implies that standard deviation is especially important for the

portfolio selection.

Compared with CoER=, the dependence of the CoER≤ on the quantile parameters qp and qm

has a more complex form. To visually explain such a dependence structure, we plot the contour

lines of CoER≤ in Figure 3.6 First, it clearly appears from panels (a) and (b) of Figure 3 that,

(a) (b)

Figure 3: Contour lines of CoER≤ for σm = 0.9 and µp = µm = 0: (a) qm = 10% and qp = 10%,
(b) qm = 10% and qp = 50%.

as the parameter qp decreases, portfolio correlation with the system becomes less significant for

the investor. This is because the most prominent role is then played by the portfolio standard

deviation. Such a dependence pattern is similar for CoER=, as already discussed after Proposition

2. Second, and most interestingly, Figure 3 highlights that the higher the standard deviation of

portfolio returns, the larger the role played by the correlation of the portfolio with the system (as

the standard deviation gets larger, the level curves become steeper). In this respect, the top-right

corners of panels (a) and (b) are empirically relevant cases because correlation usually increases

with volatility (see, for instance, Longin and Solnik (1995), Campa and Chang (1998), Roll (1988),

and Black (1976)).

Investors are likely to invest in portfolios with low (and even negative) correlation with the

6We only illustrate the dependence of CoER≤ on qp, because its dependence on qm is the same as for CoER=,
and this has already been discussed.
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system if the system is in a downturn. This is precisely the behavior captured by CoER≤. By

construction, CoER≤ considers portfolio returns that are smaller than CoV aRqp in stressed market

conditions. However, when the system is in a downturn, low correlation between the portfolio and

the system implies a higher value of CoV aRqp (since
dCoV aRqp

dρ < 0) which, in turn, implies higher

expected returns in stressed markets. Therefore, conditioned on a systemic event {Rm ≤ V aRqm},

low correlation with the system implies a higher portfolio’s expected return.

Unlike CoER=, there is no closed-form expression for the optimal portfolio weights w∗ maxi-

mizing the criterion CoER≤ in (P2). Nonetheless, we can approximate it well using the following

procedure. Since µp = wTµ, σ2
p = wTΣw, and ρ = wTσ

σm
√
wTΣw

, we can develop a first-order Taylor

expansion of the expression of λ(ρ; qm, qp) given in (2.9) to obtain the following approximation

CoER≤(ρ0) for CoER≤:

CoER≤(ρ0) = µp −
(
λ(ρ0; qm, qp) +

dλ

dρ

∣∣∣
ρ0

(ρ− ρ0)

)
σp

= wTµ︸︷︷︸
Portfolio
Return

− 1

σm

dλ

dρ

∣∣∣
ρ0

wTσ︸︷︷︸
Portfolio-System

Covariance

−
(
λ(ρ0; qm, qp)−

dλ

dρ

∣∣∣
ρ0
ρ0

)√
wTΣw︸ ︷︷ ︸

Portfolio
St.Dev.

(2.11)

Based on the approximation (2.11), we can then develop an approximate formulation of the original

problem (P2) as follows:

max
w

CoER≤(ρ0) (P̃2)

s.t. wT1 = 1.

We can easily recognize the similarity of (2.11) with (2.4), which implies that we can obtain a

closed-form solution to (P̃2). The portfolio that maximizes the criterion (P̃2) is provided in the

following proposition.

Proposition 4 Under Assumption 2, the portfolio that maximizes CoER≤(ρ0) is given by

w∗(ρ0) =
Σ−11

1TΣ−11
− 1√(

λ̃2 − ∆̃TQ̃−1∆̃
)

(1TΣ−11)

 (Q̃−1)T∆̃

−1TQ̃−1∆̃

 (2.12)
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provided that

λ̃ >

√
∆̃TQ̃−1∆̃, (2.13)

where

λ̃ = λ(ρ0; qm, qp)−
dλ

dρ

∣∣∣
ρ0
ρ0

and the expressions of Q̃ and ∆̃ are given by (A.17) in the Appendix.

The solution w∗(ρ0) of the approximation problem (P̃2) can be used to find the solution w∗ of

the original problem (P2), as shown in the next proposition.

Proposition 5 Let ρ0 = ρ(w∗(ρ0)). Then the vector w∗ is a solution to the problem (P2) if and

only if it is a solution to the approximation problem (P̃2).

By the proposition above, the correlation of the optimal portfolio with the system is equivalent

to the solution ρ0 of the nonlinear fixed point equation ρ(w∗(ρ0)) = ρ0. In other words, the solution

to the original problem (P2) has the same form as the solution to the approximate problem (P̃2)

and is given by (2.12). The constraint (2.13) admits the same interpretation as in CoER= (see also

Section 2).

The optimal portfolio w∗(ρ0) given by (2.12) consists of two components. The first component

is the well-known global minimum variance portfolio (lowest risk portfolio, see Merton (1972)). The

second component is the systemic risk adjustment to the minimum variance portfolio in the sense

that it alters the minimum variance portfolio in such a way that the resulting portfolio yields the

maximum of CoER≤.

3 Relation to Mean–Variance analysis

In this section we discuss how the problems (P1) and (P2) analyzed in Section 2 compare with the

traditional mean–variance formulation. We say that a portfolio w belongs to the mean–variance
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boundary if, for some µp, it solves

min
w

σ2
p = wTΣw

s.t. wT1 = 1,

wTµ = µp.

We start with the following result.

Proposition 6 If all assets in the portfolio are uncorrelated with the system, then the portfolio

that maximizes CoER= (or CoER≤) belongs to the mean–variance boundary.

The result can be intuitively understood as follows. If returns are jointly normal, then the

assumption of zero covariance is equivalent to independence. It then follows from (2.2) and (2.7)

that CoV aRqp is the same as V aRqp , and both CoER= and CoER≤ coincide with the Expected

Shortfall measure proposed by Rockafellar and Uryasev (2002), that is, with CV aRqp = E[Rp|Rp ≤

V aRqp ]. This is well-known to generate the mean–variance boundary when used as the objective

function by an investor (see, for example, Alexander and Baptista (2004)).

In the next proposition we show that the problem of finding the maximum of CoER= (or

CoER≤) is equivalent to the problem of finding the minimum variance portfolio, i.e., the weight

vector minimizing wTΣw, if additional constraints on the portfolio–system covariance and expected

portfolio returns are imposed.

Proposition 7 Under Assumption 2, the optimal portfolio that maximizes CoER= (or CoER≤)

belongs to the efficient boundary (σp, µp, cp) implied by the solution of the following optimization

problem

min
w

σ2
p = wTΣw (3.1)

s.t. wT1 = 1,

wTµ = µp, (3.2)

wTσ = cp. (3.3)
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The efficient boundary (σp, µp, cp) is specified by the equation

σ2
p = [1, µp, cp]

(
BΣ−1BT

)−1
[1, µp, cp]

T

where B = [1, µ, σ]T is of full rank. Furthermore, the following separation result holds: Any optimal

portfolio subject to a given expected return and covariance with the system can be replicated by three

portfolios that belong to the efficient boundary.

To intuitively understand Proposition 7, let us assume that we have obtained the portfolio that

maximizes CoER=, that is, the portfolio that solves the problem (P1).7 Denote the expected return

on this portfolio by µ∗p and the covariance with the system by c∗p. This implies that the constraints

wTµ = µ∗p and wTσ = c∗p are trivially satisfied by the optimal portfolio and adding these constraints

to the problem (P1) does not change the solution. However, with these additional constraints the

problem (P1) is the same as the quadratic optimization problem (3.1) where we use µ∗p and c∗p on

the right-hand side of (3.2) and (3.3), respectively. Then the expected returns and covariance with

the system in the expression of CoER= given by (2.4) can be replaced by the constants µ∗p and c∗p,

respectively. The problem of minimizing CoER= then boils down to that of finding the portfolio

with minimum variance.

However, the portfolio that solves the quadratic optimization problem (3.1) does not necessarily

solve problems (P1) and (P2). For example, the first component of the optimal portfolio (2.12)

(minimum variance portfolio) never yields the maximum of CoER≤ because the second component

of the optimal portfolio (2.12) involves a positive definite matrix Q−1 and, thus, is never zero. At

the same time, it can be easily seen that the minimum variance portfolio can be a solution of the

quadratic optimization problem (3.1). Therefore, the set of portfolios that solve problems (P1)

and (P2) for various values of the quantile parameters qm and qp is a subset of the set of optimal

porfolios that solve the quadratic optimization problem (3.1) for various values of µp and cp.

The above arguments have the following financial implications. By solving problem (P1) (or

(P2)), an investor selects a portfolio on the boundary (σp, µp, cp) that performs well in a low return

environment, that is, a portfolio that yields the maximum of CoER= (or CoER≤). In other words,

not all portfolios on the boundary (σp, µp, cp) are attractive from the systemic-risk perspective;

7The same argument also applies to the portfolio that maximizes CoER≤ (solves problem (P2)).
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to find such portfolios the investor solves (P1) (or (P2)). Since the boundary (σp, µp, cp) given

in Proposition 7 satisfies an additional constraint on the covariance between the portfolio and

the system, as compared with the mean–variance boundary, one would expect the mean–variance

boundary to lie above the boundary (σp, µp, cp) in the (σp, µp)–space. Thus, in normal market

conditions, the portfolios that are mean–variance efficient are expected to have higher expected

returns for a given value of portfolio standard deviation σp.

We conclude this section with an example that illustrates that the portfolios that are optimal

from the mean–variance perspective may be suboptimal when their correlation with the system is

taken into account, or equivalently, when CoER≤ (or CoER=) is used as a performance metric.

Example 2 Let qm = qp = 10%, σm = 0.2, µm = µp = 0, and consider the following two portfolios:

• Portfolio A with ρA = 0.01 and σpA = 0.7 (low correlation/high variance portfolio)

• Portfolio B with ρB = 0.4 and σpB = 0.6 (high correlation/low variance portfolio)

We then have that CoER≤A = −1.24 (CoER= = −1.23) and CoER≤B = −1.40 (CoER= = −1.27)

implying that, ceteris paribus, portfolio A is preferred even though it has a higher standard deviation.

4 Empirical Analysis

In this section, we test the performance of the portfolio models CoER= and CoER≤ analyzed in

Section 2. We use stock price data from the US and Canadian financial markets. We choose the

constituents of the S&P500 Financials Index for the US market, and of the S&P/TSX Capped

Financial Index for the Canadian market, as of October 1, 2018. We restrict our analysis to firms

for which a historical price sequence is available starting from January 4, 2000. This yields a total

of 52 US and 19 Canadian companies. We define the systemic event as a severe market decline,

captured by a significant drop of the broad market index (a proxy for the financial system). Our

definition is similar to that of Brownlees and Engle (2017), who argue that the triggering systemic

event of the financial crisis is the decline (40% drop over 6 months) of the broad market index. We

proxy the market index with the MSCI World Index. We use daily Bloomberg data from January

4, 2000 until October 20, 2018, and the time series for the MSCI World Index are converted into

the corresponding domestic currencies based on end-of-day exchange rates reported by Bloomberg.
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4.1 Estimation methodology

In this section we describe the estimation methodology. We estimate the expected returns of assets

in the portfolio using the historical average of the returns over the entire sample, and the covariance

matrix of returns using the GARCH–DCC model (see Engle (2002, 2009)). We explicitly indicate

the time dependence of the variables by adding the subscript t; for example, we write ri,t to indicate

the rate of return of stock i at time t.

We collect the logarithmic returns on the n stocks and the market index in the vector r̃t =

(r̃1,t, ..., r̃n+1,t)
T, where r̃i,t = ln(1 + ri,t), i = 1, ..., n+ 1, and the (n+ 1)th return is the return on

the market index. We assume that conditional on the information set Ft−1 available at time t− 1,

the returns have an (unspecified) distribution D with zero mean and time-varying covariance

r̃t | Ft−1 ∼ D(0, DtCtDt)

where D2
t is the diagonal matrix whose i-th entry on the main diagonal is the variance σ2

i,t of r̃i,t.

We use the GJR–GARCH model first proposed by Glosten et al. (1993) to model the dynamics of

variances, that is,

σ2
i,t = ωV i + αV ir̃

2
i,t−1 + γV ir̃

2
i,t−1Ii,t−1 + βV iσ

2
i,t−1,

where Ii,t = 1 if r̃i,t < 0 and 0 otherwise. We prescribe the following dynamics for the correlation

matrix of the volatility adjusted returns εt = D−1
t r̃t:

Ct = diag(Qt)
−1/2Qt diag(Qt)

−1/2,

where Qt is the pseudo-correlation matrix. The Dynamic Conditional Correlation (DCC) model

then specifies the following dynamics for the matrix Qt:

Qt = (1− αC − βC)C + αCεt−1ε
T
t−1 + βCQt−1,

where C is the unconditional correlation matrix. The model is typically estimated using a two-step

quasi-maximum likelihood estimation procedure (see Engle (2009)). We will refer to the above
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model specification as GARCH–DCC. The GARCH–DCC methodology is widely used in financial

time series analysis as this class of models is parsimonious and is able to capture well many stylized

facts of financial data. Table 1 provides the summary statistics for GARCH–DCC model weekly

parameter estimates.

Table 1: The quantiles of GARCH–DCC weekly parameter estimates for the firms and the market
index based on the sample period January 6, 2006 through October 19, 2018. The values are
reported in the form of (10%, 50%, 90%)–quantiles.

US
Firms Market Index

ωV (0.0144, 0.0329, 0.0905) (0.0123, 0.0137, 0.0156)
αV (0.0072, 0.0288, 0.0625) (0.0000, 0.0000, 0.0043)
βV (0.8767, 0.9209, 0.9536) (0.9046, 0.9137, 0.9194)
γV (0.0447, 0.0860, 0.1282) (0.1303, 0.1376, 0.1464)
αC (0.0016, 0.0035, 0.0038) (0.0016, 0.0035, 0.0038)
βC (0.9770, 0.9807, 0.9854) (0.9770, 0.9807, 0.9854)

Canada
Firms Market Index

ωV (0.0113, 0.0255, 0.0932) (0.0078, 0.0110, 0.0119)
αV (0.0110, 0.0508, 0.1141) (0.0000, 0.0012, 0.0045)
βV (0.8403, 0.9245, 0.9538) (0.9331, 0.9381, 0.9514)
γV (0.0002, 0.0388, 0.0760) (0.0779, 0.0895, 0.0950)
αC (0.0031, 0.0040, 0.0043) (0.0031, 0.0040, 0.0043)
βC (0.9747, 0.9871, 0.9901) (0.9747, 0.9871, 0.9901)

The summary statistics on parameter estimates given in Table 1 reveal that the point estimates

of the GJR–GARCH parameters are in line with the typical GJR–GARCH parameter estimates

for equity markets (see Engle (2002, 2009) and Brownlees and Engle (2017)). Notice also that the

market index has a slightly higher value of the asymmetric coefficient γV that the stocks, which

implies a higher sensitivity of the market to large increases in volatility when the value of the index

drops.
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4.2 Sharpe ratios results

We measure the performance of the portfolio using the annualized Sharpe ratio of portfolio returns8

conditioned on a drop of C% in the market index, that is,

Sharpe ratio =
µ̂p
σ̂p

∣∣∣
Rm<C

,

where

µ̂p =
1

T

T∑
t=1

(w∗t )
Trt, σ̂2

p =
1

T − 1

T∑
t=1

((w∗t )
Trt − µ̂p)2,

and w∗t is the vector of optimal portfolio weights computed based on the information (covariance

matrix and expected returns) available in period t, rt is the vector of stock returns in period t,

and T is the number of periods when the portfolio is rebalanced. As we would like to measure

the performance of the portfolio during periods of market downturns, we only consider portfolio

returns associated with declines of the market index.

We first construct the portfolio in January 2006 and then rebalance it at a given frequency,

weekly or monthly, until October 2018. Thus, in the case of weekly rebalancing the portfolio is

constructed on January 6, 2006 and we have T = 670 rebalancing periods, while in the case of

monthly rebalancing, we construct the portfolio on January 31, 2016 and have T = 153 rebalancing

periods. We choose the following two specifications for the threshold C: (i) C = 0, i.e, rebalancing

occurs when the market index experiences negative returns, and (ii) C = −1.5%(−6.7%) for weekly

(monthly) rebalancing, corresponding to a 40% decrease in the market index over a 6-month period.

Although the specification (ii) is the one which better captures a systemic event (a significant drop

in the market index), we also test our portfolios on less severe market declines which are represented

by the specification (i).

We evaluate the Sharpe ratio out-of-sample. At time t, we construct the portfolio using only

information available at time t (estimates of covariance matrix and expected returns), and evaluate

the Sharpe ratio on the new data that become available at time t+1. At time t+1, we rebalance the

8A similar methodology to assess portfolio performance has been used by Ban et al. (2018) and DeMiguel et
al. (2009), among others. Ban et al. (2018) applied machine learning to portfolio construction and DeMiguel et al.
(2009) assessed the efficiency of 1/n portfolio strategy.
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portfolio to reflect the new information available at that time. For comparison purposes, we also

evaluate the performance against two other performance criteria, namely the Markowitz Minimum

Variance (MV) and equally-weighted (1/n) portfolios. These are widely used benchmarks which,

like CoER≤ and CoER=, admit closed form expressions and hence serve as a good comparison to

assess the role played by systemic risk in portfolio selection. Moreover, the portfolio maximizing

the CoER≤ criterion is related to the MV portfolio, because it is obtained by adjusting the latter

to account for systemic risk (see Section 2.2, Equation (2.12)). The equally-weighted portfolio

represents a well-diversified portfolio of assets, that has been shown to have a superior performance

over several other well-known portfolios (see DeMiguel et al. (2009)).

We first consider the Sharpe ratios evaluated at times when the market index has negative

returns, that is, when Rm < 0.9 The annualized Sharpe ratios and standard deviations of the

portfolios are shown in Table 2.

It follows from Table 2 that CoER≤ consistently outperforms the other portfolios in terms of

Sharpe ratios. Notably, the standard deviation of the CoER≤ maximizing portfolios is not the

smallest among the considered portfolios implying that higher Sharpe ratios are due to larger re-

turns. The data in Table 2 confirm that the parameters qm and qp allow the investor to express

his relative preferences between the covariance of the portfolio with the market and the standard

deviation of the portfolio, as theoretically shown in Section 2. Smaller values of qp imply a smaller

standard deviation for the CoER≤ maximizing portfolio. A smaller value of qm attributes higher

importance to the covariance with the market in periods of market downturns, and thus the Sharpe

ratio under both CoER= and CoER≤ is decreasing in qm. Consistently with intuition, an increase

in Sharpe ratio unambiguously results in increased portfolio standard deviation. These conclusions

appear robust against the rebalancing frequency, as also shown in Table 3 where monthly rebal-

ancing is considered. Most importantly, CoER≤ consistently outperforms the other portfolios.

9We remark that in all evaluated portfolios, the assumptions (2.6) and (2.13) on λ and λ, respectively, were never
violated.
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Table 2: Annualized Sharpe ratios and standard deviations (in brackets) of four weekly rebalanced
portfolios spanning the period January 6, 2006 through October 19, 2018. We condition on the
event that the market index has negative weekly returns (Rm < 0). The maximum values of the
Sharpe ratios are highlighted in bold.

(a) US stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −1.5760 (0.1352) 0.9201 (0.1865)
CoER= −4.3394 (0.1419) −3.5878 (0.1339)
Min.Var. −3.0941 (0.1329) −3.0941 (0.1329)

1/n −4.4961 (0.2400) −4.4961 (0.2400)

qp = 0.1

CoER≤ −2.1437 (0.1324) −0.8743 (0.1420)
CoER= −4.3397 (0.1419) −3.7733 (0.1352)
Min.Var. −3.0941 (0.1329) −3.0941 (0.1329)

1/n −4.4961 (0.2400) −4.4961 (0.2400)

(b) Canadian stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −2.9468 (0.1651) −2.7941 (0.1686)
CoER= −3.4438 (0.1566) −3.2376 (0.1597)
Min.Var. −3.1399 (0.1613) −3.1399 (0.1613)

1/n −3.8509 (0.1714) −3.8509 (0.1714)

qp = 0.1

CoER≤ −3.0180 (0.1637) −2.9143 (0.1658)
CoER= −3.4437 (0.1566) −3.2810 (0.1590)
Min.Var. −3.1399 (0.1613) −3.1399 (0.1613)

1/n −3.8509 (0.1714) −3.8509 (0.1714)

Next, we evaluate the Sharpe ratio under more extreme market scenarios, i.e., assuming that

Rm < −1.5% for weekly and Rm < −6.7% for monthly rebalancing (see Table 4).

Notice that the Sharpe ratios in Table 4 are greater (in absolute terms) than the corresponding

Sharpe ratios in Table 2. This is expected, because we are considering more extreme scenarios of

market downturns. Noticeably, Table 4 indicates that CoER≤ outperforms the other portfolios.

The improvement of Sharpe ratios for CoER≤ over the benchmark portfolios becomes significant as

the quantile parameter qm gets smaller. This is consistent with intuition, because small values of qm

imply that more extreme market returns are considered when constructing the optimal portfolio.

Furthermore, as qm decreases, the Sharpe ratio of CoER≤ increases more relative to that of CoER=.

For example, fixing qp = 0.1 and decreasing qm from 0.5 to 0.3 in the case of US portfolios results

in an increase of the Sharpe ratio for CoER≤ of −3.8081 + 1.7081 = −2.1000. The corresponding
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Table 3: Annualized Sharpe ratios and standard deviations (in brackets) of four monthly rebalanced
portfolios spanning the period January 6, 2006 through October 19, 2018. We condition on the
market index having negative monthly returns (Rm < 0). The maximum values of the Sharpe
ratios are highlighted in bold.

(a) US stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −0.3017 (0.1620) 0.6135 (0.2019)
CoER= −1.7082 (0.1463) −1.2607 (0.1460)
Min.Var. −0.9542 (0.1505) −0.9542 (0.1505)

1/n −2.1366 (0.2005) −2.1366 (0.2005)

qp = 0.1

CoER≤ −0.5316 (0.1567) −0.0498 (0.1694)
CoER= −1.7083 (0.1463) −1.3622 (0.1457)
Min.Var. −0.9542 (0.1505) −0.9542 (0.1505)

1/n −2.1366 (0.2005) −2.1366 (0.2005)

(b) Canadian stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −1.2136 (0.1556) −1.1660 (0.1603)
CoER= −1.3772 (0.1418) −1.3120 (0.1469)
Min.Var. −1.2746 (0.1500) −1.2746 (0.1500)

1/n −1.5158 (0.1267) −1.5158 (0.1267)

qp = 0.1

CoER≤ −1.2362 (0.1535) −1.2034 (0.1566)
CoER= −1.3772 (0.1418) −1.3257 (0.1457)
Min.Var. −1.2746 (0.1500) −1.2746 (0.1500)

1/n −1.5158 (0.1267) −1.5158 (0.1267)

increase for CoER= is smaller and equal to −7.7929 + 6.6887 = −1.1042. The Sharpe ratios in the

case of monthly rebalanced portfolios given in Table 5 are broadly consistent with the estimates

in the case of weekly rebalancing. Nevertheless, Table 5 provides somewhat different results, e.g.,

CoER≤ does not outperform the other portfolios for Canadian markets. We explain this behavior

by noticing that, for Canadian markets, a decline of the Canadian dollar-denominated return on

the market index below the level −6.7% only occurred 5 times in the data sample. Correspondingly,

the average Sharpe ratio results are rather insufficient to draw reliable conclusions as there are too

few data points used in evaluating the average.

We next analyse the level of diversification of CoER≤ and CoER= optimal portfolios, and its

dependence on the quantile parameters qm and qp. As in Goetzmann and Kumar (2008), we use

the Sum of Squared Portfolio Weights (SSPW) to measure diversification. The SSPW at a certain
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Table 4: Annualized Sharpe ratios and standard deviations (in brackets) of four weekly rebalanced
portfolios spanning the period January 6, 2006 through October 19, 2018. We condition on the
event that the market index has weekly returns smaller than −1.5% (Rm < −1.5%). The maximum
values of the Sharpe ratios are in bold.

(a) US stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −2.8761 (0.1700) 1.0973 (0.2501)
CoER= −7.7921 (0.1602) −6.3399 (0.1569)
Min.Var. −5.4896 (0.1589) −5.4896 (0.1589)

1/n −7.8203 (0.2772) −7.8203 (0.2772)

qp = 0.1

CoER≤ −3.8081 (0.1639) −1.7081 (0.1826)
CoER= −7.7929 (0.1602) −6.6887 (0.1570)
Min.Var. −5.4896 (0.1589) −5.4896 (0.1589)

1/n −7.8203 (0.2772) −7.8203 (0.2772)

(b) Canadian stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −4.7900 (0.2200) −4.5634 (0.2246)
CoER= −5.5413 (0.2071) −5.2268 (0.2120)
Min.Var. −5.0794 (0.2145) −5.0794 (0.2145)

1/n −6.1703 (0.2185) −6.1703 (0.2185)

qp = 0.1

CoER≤ −4.8958 (0.2178) −4.7415 (0.2209)
CoER= −5.5413 (0.2071) −5.2924 (0.2109)
Min.Var. −5.0794 (0.2145) −5.0794 (0.2145)

1/n −6.1703 (0.2185) −6.1703 (0.2185)

date t is given by

SSPWt =
n∑
i=1

w2
it, (4.1)

where wit is the weight of stock i in the portfolio in period t. A lower value of SSPW reflects a

higher level of diversification. We show the results only for US portfolios with monthly rebalancing

because the results for weekly rebalancing are very similar (the plots for the Canadian portfolios

are given in the Appendix).

Figure 5 indicates that the diversification level of MV portfolios is always between that of

CoER≤ and CoER= portfolios. A decrease in qm makes the optimal portfolio less diversified

(compare panels (a) and (b) of Figure 5, respectively with panels (c) and (d) of the same figure),

whereas a decrease in qp implies a more diversified optimal portfolio (compare panels (a) and (c)

of Figure 5, respectively with panels (b) and (d) of the same figure). This can be understood as
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Table 5: Annualized Sharpe ratios and standard deviations (in brackets) of four monthly rebalanced
portfolios spanning the period January 6, 2006 through October 19, 2018. We condition on the event
that the market index has monthly returns smaller than −6.7% (Rm < −6.7%). The maximum
values of the Sharpe ratios are highlighted in bold.

(a) US stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −1.5538 (0.2766) 0.0659 (0.3538)
CoER= −4.0990 (0.2104) −3.2071 (0.2255)
Min.Var. −2.7377 (0.2406) −2.7377 (0.2406)

1/n −6.1798 (0.2255) −6.1798 (0.2255)

qp = 0.1

CoER≤ −1.9243 (0.2638) −1.0906 (0.2946)
CoER= −4.1003 (0.2104) −3.3969 (0.2219)
Min.Var. −2.7377 (0.2406) −2.7377 (0.2406)

1/n −6.1798 (0.2255) −6.1798 (0.2255)

(b) Canadian stocks

qm = 0.5 qm = 0.3

qp = 0.2

CoER≤ −3.8621 (0.2801) −3.8650 (0.2890)
CoER= −3.8872 (0.2465) −3.8912 (0.2604)
Min.Var. −3.8466 (0.2692) −3.8466 (0.2692)

1/n −7.0936 (0.1028) −7.0936 (0.1028)

qp = 0.1

CoER≤ −3.8596 (0.2759) −3.8630 (0.2819)
CoER= −3.8862 (0.2465) −3.8895 (0.2576)
Min.Var. −3.8466 (0.2692) −3.8466 (0.2692)

1/n −7.0936 (0.1028) −7.0936 (0.1028)

follows. As discussed in Section 2, smaller qp implies that the portfolio composition is driven more

by the portfolio variance rather than correlation of the portfolio with the market. As a result, for

small qp the selection criterion becomes closer to the mean–variance objective. As qm decreases,

portfolio correlation with the market becomes the dominating component, and the portfolio se-

lection criterion deviates from the mean–variance objective. As a result, the CoER≤ portfolio

becomes significantly more concentrated than the MV portfolio as qm decreases. Intuitively, the

fact that dCoER≤

dρ < 0 makes the optimal portfolio more concentrated on the stocks that have

smaller correlation with the market. This further implies that during crises, an investor is willing

to sacrifice diversification benefits to select few stocks that have low correlation with the market.
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(a) qm = 0.5, qp = 0.2 (b) qm = 0.5, qp = 0.1

(c) qm = 0.3, qp = 0.2 (d) qm = 0.3, qp = 0.1

Figure 4: The Sum of Squared Portfolio Weights (SSPW) for portfolios based on data from the US
market, for different values of the quantile parameters qm and qp. Rebalancing is executed monthly.

5 Conclusions

We have developed a model for portfolio selection in the presence of systemic risk. Our modeling

approach defines a systemic event in terms of simultaneous bad performance of the market and of

the portfolio’s returns. We have used VaR and CoVaR measures to quantify the severity of the

systemic event.

We have obtained an explicit solution to the portfolio selection problem, and studied the effect of

the quantile parameters measuring tail events on the risk of the portfolio. We have shown that these

quantile parameters allow the investor to properly balance portfolio variance and correlation with

the system. Our analysis shows that any optimal portfolio with given expected return, variance,

and covariance with the system can be replicated by three appropriately chosen portfolios. The

26

 Electronic copy available at: https://ssrn.com/abstract=3394471 



optimal portfolio becomes mean–variance efficient if its constituents are not correlated with the

system.

We have assessed the performance of our portfolio criterion on data from the Canadian and

US equity markets. Our empirical analysis suggests that the optimal portfolio achieves higher

Sharpe ratios than the Minimum Variance and 1/n portfolios during periods of market distress.

Our empirical results also show that the optimal portfolio is less diversified than the Minimum

Variance portfolio if it accounts for systemic risk. This is because, in anticipation of systemic

events, the investor prefers to sacrifice diversification benefits and gain from the reduced exposure

of the portfolio to elevated market distress.

A Proofs of Propositions

Proof of Proposition 1. Let X ∼ N (µ, σ2). Using the definition of VaR

∫ V aRq

−∞

1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx = q,

we obtain that

V aRq = µ+ σΦ−1 (q) . (A.1)

The Expected Shortfall is given by

ES =
1

q

∫ V aRq

−∞

x

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx

= µ− σ

q
φ
(
Φ−1 (q)

)
. (A.2)

Let (X,Y ) ∼ BN (µx, µy, σx, σy, ρ). It is then well known (see for example, Section 4.7 of Bertsimas

and Tsitsiklis (2000)) that

X|Y = y ∼ N
(
µx + ρσx

y − µy
σy

, σ2
x(1− ρ2)

)
(A.3)
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Let Rp = X and Rm = Y . Since CoVaR is defined as the VaR of the portfolio when the system

is at its VaR level (i.e., Rm is fixed at its VaR level V aRqm = µm + σmΦ−1 (qm)), it follows from

(A.1) and (A.3) that

CoV aRqp = µp + ρσpΦ
−1(qm) + σp

√
1− ρ2Φ−1(qp)

implying that
dCoV aRqp

dρ < 0 if and only if ρ√
1−ρ2

< Φ−1(qm)
Φ−1(qp)

. Thus, we obtain (2.5).

It also follows from (A.2) and (A.3) that

CoER= = µp + ρσp
V aRqm − µm

σm︸ ︷︷ ︸
µ in (A.2)

− σp
qp

√
1− ρ2︸ ︷︷ ︸

σ
q

in (A.2)

φ
(
Φ−1(qp)

)

= µp + σp

(
ρΦ−1(qm)− 1

qp

√
1− ρ2φ

(
Φ−1(qp)

))
. (A.4)

The expession (2.4) follows from (A.4) by noticing that µp = wTµ, σ2
p = wTΣw, and ρ = wTσ/σmσp.

�

Proof of Proposition 2. We can write the covariance matrix of returns on all stocks and the

system as

 Σ σ

σT σ2
m,

 ,
where σ is the column vector of covariances of each stock with the system. The joint distribution

of portfolio’s return and the system return is bivariate normal with mean vector [wTµ, µm] and

covariance matrix  wTΣw wTσ

wTσ σ2
m

 =

 σ2
p wTσ

wTσ σ2
m

 .
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Because the portfolio correlation with the system is ρ = wTσ/σmσp, it follows from (A.4) that

CoER= = µp + σp

(
ρΦ−1(qm)− 1

qp

√
1− ρ2φ

(
Φ−1(qp)

))

= wTµ+
√
wTΣw

 wTσ

σm
√
wTΣw

Φ−1(qm)− 1

qp

√
1−

(
wTσ

σm
√
wTΣw

)2

φ
(
Φ−1(qp)

)
= wTµ+

Φ−1(qm)

σm
wTσ −

φ
(
Φ−1(qp)

)
σmqp

√
σ2
mw

TΣw − wTσσTw

= wT

(
µ+

Φ−1(qm)

σm
σ

)
−
φ
(
Φ−1(qp)

)
σmqp

√
σ2
mw

T

(
Σ− 1

σ2
m

σσT
)
w

= wTµ̂− λ
√
wTΣ̂w, (A.5)

where

µ̂ = µ+
Φ−1(qm)

σm
σ, λ =

φ
(
Φ−1(qp)

)
qp

, Σ̂ = Σ− 1

σ2
m

σσT. (A.6)

From Landsman (2008,a) it follows that the maximum of (A.5) under the constraint wT1 = 1

is reached at

w∗ =
Σ̂−11

1TΣ̂−11
− 1√

(λ2 −∆TQ−1∆) (1TΣ̂−11)

 (Q−1)T∆

−1TQ−1∆

 ,
where

∆ = µ̂n1− ˜̂µ, Q = Σ̃− 1σ̃T − σ̃1T + σnn11T (A.7)

with ˜̂µ = [µ̂1, ..., µ̂n−1]T and Σ̃, σ̃ defined by

Σ̂ =

 Σ̃ σ̃

σ̃T σnn


provided that

λ >
√

∆TQ−1∆. (A.8)
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The restriction (A.8) guarantees that the solution is finite. �

Proof of dλ
dqp

< 0. We have

dλ

dqp
=

d

dqp

(
φ
(
Φ−1(qp)

)
qp

)
= −

qpΦ
−1(qp) + φ

(
Φ−1(qp)

)
q2
p

,

where we have used the inverse function theorem. Clearly, d
dqp

(
φ(Φ−1(qp))

qp

)
< 0 is equivalent to

qpΦ
−1(qp) + φ

(
Φ−1(qp)

)
> 0. (A.9)

Let x = Φ−1(qp). Then the inequality (A.9) becomes f(x) := xΦ(x) + φ(x) > 0. This holds true

because df
dx = Φ(x) > 0 and lim

x→−∞
f(x) = 0, where we have applied L’Hospital’s rule twice to the

fraction x
1/Φ(x) . �

Proof of Proposition 3. We use the results from Kan and Robotti (2017). If (X1, X2) ∼

BN (m,Σ) where Σ is the correlation matrix, they provide an explicit expression for the first

moment of the lower truncated random variable Z1, that is,

E[Z1] := E[X1|a1 < X1, a2 < X2] = m1 +
φ(η1)Φ(w2·1) + ρφ(η2)Φ(w1·2)

Φ2(η1, η2; ρ)
,

where

ηi = mi − ai,

Φ2(η1, η2; ρ) =
1

2π
√

1− ρ2

∫ η1

−∞

∫ η2

−∞
exp

(
−(x2 + y2 − 2ρxy)

2(1− ρ2)

)
dx dy, (A.10)

wi·j = (ηi − ρηj)/
√

1− ρ2.

The corresponding expression in the case of a general covariance matrix Σ can be obtained by

replacing ai with ai/σi, mi with mi/σi, and multiplying everything by σ1 (standard deviation of

X1).

To obtain the first moment of the upper truncated bivariate normal random variable, one should
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notice that (−X1,−X2) ∼ BN (−m,Σ), and thus, replace m with −m, a with −b, and multiply the

result by −1. Mathematically,

E[X1|X1 < b1, X2 < b2] = m1 − σ1
φ(η1)Φ(w2·1) + ρφ(η2)Φ(w1·2)

Φ2(η1, η2; ρ)
,

where ηi = (bi − mi)/σi. The result (2.8) follows from the fact that Φ2(η1, η2; ρ) = qmqp in our

setting.

Since the Gaussian cdf and pdf are positive functions and ρ ≥ 0, we also have λ(ρ; qmqp) > 0.

Furthermore, from the definition of CoV aRqp , we have

P
(
Rp ≤ CoV aRqp

∣∣∣Rm ≤ V aRqm) = qp

⇐⇒P
(
Rp − µp
σp

≤
CoV aRqp − µp

σp

∣∣∣Rm − µm
σm

≤ V aRqm − µm
σm

)
= qp

⇐⇒P
(
n1 ≤ η1

∣∣∣n2 ≤ η2

)
= qp,

where the distribution of (n1, n2) is a bivariate standard Gaussian. Therefore, η1 and η2 are inde-

pendent of µp, µm, σm, and σp implying that λ(ρ; qm, qp) is also independent of these parameters.

Next, we show that the function λ is strictly increasing in the correlation parameter ρ. Through-

out this appendix, for notational compactness we will use X and Y in place of Rp and Rm, respec-

tively. Thus, let (X,Y ) ∼ BN (µx, µy, σx, σy, ρ), and define ξ1 := (x−µx)/σx, and ξ2 := (y−µy)/σy.

It is well known that a bivariate normal pdf (see, for example, the Appendix in Sibuya (1960)) can

be written as

1

2πσxσy
√

1− ρ2
exp

(
−(ξ2

1 + ξ2
2 − 2ρξ1ξ2)

2(1− ρ2)

)
=

1

σxσy
√

1− ρ2
φ

(
ξ1 − ρξ2√

1− ρ2

)
φ (ξ2) (A.11)

=
1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) . (A.12)
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Therefore, the bivariate Gaussian cdf may be rewritten as

P(X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞

1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dy dx

=

∫ a−µx
σx

−∞

∫ b−µy
σy

−∞

1√
1− ρ2

φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ2 dξ1

=

∫ a−µx
σx

−∞

1√
1− ρ2

φ (ξ1)

∫ b−µy
σy

−∞
φ

(
ξ2 − ρξ1√

1− ρ2

)
dξ2 dξ1

=

∫ a−µx
σx

−∞
φ (ξ1)

∫ b−µy
σy
−ρξ1√

1−ρ2

−∞
φ (z) dz dξ1

=

∫ a−µx
σx

−∞
Φ

 b−µy
σy
− ρξ1√

1− ρ2

φ (ξ1) dξ1. (A.13)

Let a = CoV aRqp and b = V aRqm . Using (A.13), the definition of CoV aRqp (see (2.7)), and

the definition of V aRqm (see (2.1)), we obtain

P(X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞

1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dy dx = qmqp

⇐⇒
∫ a−µx

σx

−∞
Φ

 b−µy
σy
− ρξ1√

1− ρ2

φ (ξ1) dξ1 = qmqp

⇐⇒
∫ η1(ρ)

−∞
Φ

(
η2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ1 = qmqp, (A.14)

where we have used the definition of η1 = (a − µx)/σx and η2 = (b − µy)/σy. Notice that η2 is

independent of ρ because marginal distributions of a bivariate normal distribution are independent

of the correlation parameter, and it is only the marginal distribution of Y that is needed to evaluate

V aRqm .

It is also well known (see, for example, the Appendix in Sibuya (1960)) that

d

dρ

∫ c1

−∞
Φ

(
c2 − ρz√

1− ρ2

)
φ (z) dz = φ2(c1, c2; ρ), (A.15)

where c1 and c2 are given constants and φ2 denotes the pdf of a standard bivariate normal distribu-

tion (see also (A.10) for the cdf of a standard bivariate normal distribution). Implicit differentiation

32

 Electronic copy available at: https://ssrn.com/abstract=3394471 



of (A.14) with respect to ρ yields

Φ

(
η2 − ρη1(ρ)√

1− ρ2

)
φ (η1(ρ))

dη1

dρ
+

∫ η1(ρ)

−∞

d

dρ
Φ

(
η2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ1︸ ︷︷ ︸

=φ2(η1,η2;ρ)

= 0,

where we have applied (A.15) in the above expression. Thus, using (A.12) we obtain

dη1

dρ
= −

1√
1−ρ2

φ

(
η2−ρη1√

1−ρ2

)
Φ

(
η2−ρη1√

1−ρ2

) . (A.16)

In addition, it follows from the definition of CoV aRqp and (A.16) that
dCoV aRqp

dρ < 0.

Finally, we differentiate the expression of λ(ρ; qm, qp) given by (2.9) with respect to ρ. First, we

evaluate

d

dρ

(
η2 − ρη1√

1− ρ2

)
=
ρ
(
η2 − (1− ρ2)dη1

dρ

)
− η1

(1− ρ2)3/2
,

d

dρ

(
η1 − ρη2√

1− ρ2

)
= −

η2 − (1− ρ2)dη1
dρ − ρη1

(1− ρ2)3/2
,

d

dx
φ(x) = −xφ(x).

Differentiating the first term in the brackets of λ(ρ; qm, qp) (see its definition (2.9)), we obtain

d

dρ

(
φ(η1)Φ

(
η2 − ρη1√

1− ρ2

))
=

ρ√
1− ρ2

φ(η1)φ

(
η2 − ρη1√

1− ρ2

)
︸ ︷︷ ︸

=ρφ2(η1;η2;ρ)

(
η2 − ρη1

1− ρ2
− dη1

dρ

)
,

where we have used (A.16). As for the second term in the brackets of λ(ρ; qm, qp), we have

d

dρ

(
ρφ(η2)Φ

(
η1 − ρη2√

1− ρ2

))
=φ(η2)Φ

(
η1 − ρη2√

1− ρ2

)

+
ρ√

1− ρ2
φ(η2)φ

(
η1 − ρη2√

1− ρ2

)
︸ ︷︷ ︸

=ρφ2(η1;η2;ρ)

(
dη1

dρ
− η2 − ρη1

1− ρ2

)
.
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Hence, we deduce

dλ

dρ
=

1

qmqp
φ(η2)Φ

(
η1 − ρη2√

1− ρ2

)
> 0.

�

Proof of Proposition 4. From Landsman (2008,a) it follows that the maximum of the objective

function (2.11) under the constraint wT1 = 1 is reached at

w∗ =
Σ−11

1TΣ−11
− 1√(

λ̃2 − ∆̃TQ̃−1∆̃
)

(1TΣ−11)

 (Q̃−1)T∆̃

−1̃
T
Q̃−1∆̃

 ,

where

∆̃ = µ̃n1̃− ˜̃µ, ˜̃µ = [µ̃1, ..., µ̃n−1]T, Q̃ = Σ− 1̃σT − σ1̃
T

+ σnn1̃1̃
T
, (A.17)

and

Σ =

 Σ σ

σT σnn


provided that

λ̃ >

√
∆̃TQ̃−1∆̃. (A.18)

The restriction (A.18) ensures that the solution is finite. �

Proof of Proposition 5. Assume that ρ0 = ρ(w∗(ρ0)), that is, ρ0 is the correlation of the

optimal portfolio with the system. The Lagrangian for the optimization problem (P2) is

L1(w, γ) = CoER≤ − γ(1− wT1),
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where γ is the Lagrange multiplier. Assume there exist w∗ and γ∗ such that ∇wL1(w∗, γ∗) = 0,

∇γL1(w∗, γ∗) = 0, and ρ0 = ρ(w∗(ρ0)). Then the following conditions hold

∇wL1(w∗, γ∗) =
∂µp
∂w

∣∣∣
w∗
−
(

dλ

dρ

∂ρ

∂w
σp

) ∣∣∣
w∗
− λ(ρ0; qm, qp)

∂σp
∂w

∣∣∣
w∗

+ γ∗1 = 0,

∇γL1(w∗, γ∗) = 1− (w∗)T 1 = 0.

Similarly, the Lagrangian for the approximation problem (P̃2) is given by

L2(w, γ) = CoER≤(ρ0)− γ(1− wT1).

It then follows that ∇wL1(w∗, γ∗) = 0 and ∇γL1(w∗, γ∗) = 0 implies that ∇wL2(w∗, γ∗) = 0 and

∇γL2(w∗, γ∗) = 0. This can be seen as follows:

∇wL2(w∗, γ∗) =
∂µp
∂w

∣∣∣
w∗
− λ(ρ0; qm, qp)

∂σp
∂w

∣∣∣
w∗
−
(

dλ

dρ

∂ρ

∂w
σp

) ∣∣∣
w∗

− dλ

dρ

∣∣∣
ρ0
ρ0
∂σp
∂w

∣∣∣
w∗

+
dλ

dρ

∣∣∣
ρ0
ρ0
∂σp
∂w

∣∣∣
w∗

+ γ∗1 = 0,

∇γL2(w∗, γ∗) = 1− (w∗)T 1 = 0.

Hence, the solution w∗ for the exact formulation (P2) is also optimal for the approximate formu-

lation (P̃2), and vice versa. �

Proof of Proposition 6. Write the covariance matrix of returns on all stocks and the system

as  Σ σ

σT σ2
m,

 ,
where σ is the column vector of covariances of each stock with the system. The joint distribution of
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portfolio’s return and the system return is a bivariate Gaussian with mean [wTµ, µm] and covariance

 wTΣw wTσ

wTσ σ2
m

 =

 σ2
p wTσ

wTσ σ2
m

 .
Since ρ = wTσ/σmσp, if the stocks are uncorrelated with the system then ρ = 0. Thus, for CoER≤

it follows that λ(ρ; qm, qp) = λ(0; qm, qp), and it is independent of the portfolio weights w. Therefore,

subject to the constraint wTµ = µp we have

max
w

CoER≤ = min
w
λ(0; qm, qp)σp = λ(0; qm, qp) min

w
σp.

For CoER=, zero correlation implies wTσ = 0. Thus, subject to the constraint wTµ = µp, it follows

from (2.4) that

max
w

CoER= = min
w

φ
(
Φ−1(qp)

)
qp

σp =
φ
(
Φ−1(qp)

)
qp

min
w
σp.

�

Proof of Proposition 7. We prove the result only for CoER= because the proof for CoER≤

is analogous due to the representation (2.11) and Proposition 5 (compare (2.11) with the CoER=

given by (2.4)). Applying the result in Landsman (2008,b) we obtain that the constrained quadratic

optimization problem (3.1) admits the closed-form solution

w∗∗ = Σ−1BT
(
BΣ−1BT

)−1
[1, µp, cp]

T, (A.19)

which yields the efficient boundary

σ2
p = (w∗∗)T Σw∗∗ = [1, µp, cp]

(
BΣ−1BT

)−1
[1, µp, cp]

T. (A.20)

To show that the optimal portfolio w∗ (see (2.12)) belongs to the efficient boundary, we sub-

stitute (w∗)T Σw∗, (w∗)T µ, (w∗)T σ, for σ2
p, µp, cp, respectively, in (A.20). It then follows directly

that the equality in (A.20) holds.
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Next, we establish the separation result. Consider the portfolios specified by the vectors pi =

[1, µp,i, cp,i]
T, i = 1, 2, ..., Np and assume we want to replicate a portfolio specified by p̄ = [1, µ̄p, c̄p].

Let αi be the proportion of wealth invested in each portfolio, then applying (A.19) we have

Np∑
i=1

αiw
∗∗
i = Σ−1BT

(
BΣ−1BT

)−1

 Np∑
i=1

αipi

 ,

which is equal to

Σ−1BT
(
BΣ−1BT

)−1
[1, µ̄p, c̄p]

T

if and only if

Np∑
i=1

αipi = p̄. (A.21)

It follows from the system (A.21) that the replication of portfolio p̄ with these three portfolios

(Np = 3) is guaranteed provided that det ([p1, p2, p3]) 6= 0. �

The Sum of Squared Portfolio Weights (SSPW) for Canadian portfolios. We present

the results on the level of diversification in the CoER≤ and CoER= optimal portfolios, using data

from the Canadian market (see Figure 5). �
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(a) qm = 0.5, qp = 0.2 (b) qm = 0.5, qp = 0.1

(c) qm = 0.3, qp = 0.2 (d) qm = 0.3, qp = 0.1

Figure 5: The Sum of Squared Portfolio Weights (SSPW) for portfolios based on data from the
Canadian market, for different values of the quantile parameters qm and qp. Rebalancing is executed
monthly.
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