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SYSTEMIC RISK

EXECUTIVE SUMMARY

As opposed to a firm's individual risk of failure, which 
can be contained without harming the entire financial 
system, systemic risk is the risk of collapse of the entire 
financial system or market. Since the 2007–2009 financial 
crisis numerous attempts have been made to identify and 
measure the systemic risk of financial institutions. In this 
respect the following question arises: how can a given 
systemic risk measure be used to construct portfolios that 
perform relatively well when systemic risk materializes? In 
this paper we develop a framework for the optimal portfolio 
choice based on an exogenous systemic risk measure.

In his pioneering work on portfolio choice, Markowitz 
developed a theory of portfolio selection based on the 
“risk—return” characteristics of stocks in the portfolio. 
Markowitz’s investor was assumed to be minimizing the 
variance (risk) of a portfolio’s returns subject to meeting a 
given level of expected returns. In other words, Markowitz 
answered the question:

What portfolio of stocks will deliver a 
specified expected return and at the same 
time have the lowest variance of future 
returns?

In this current research, we focus on adverse return 
scenarios and attempt to answer the question:

What portfolio of stocks will deliver the 
highest expected returns in the case of a 
financial crisis?

A “financial crisis”, or systemic event, is defined as a prolonged 
market decline. For the purpose of this paper a systemic 
event is defined as the drop in returns of a broad market 
index below their 5% VaR1 level over a 6-months period  
(Figure 1).

1	 Recall, Value-at-Risk estimates how much a set of investments 
might lose over a certain time period.

Figure 1: 5% VaR allows us to make statements of the form: We are 95% 
certain that the returns will not be less than VaR over, say, the 
next 6 months.

In addition to stressed market conditions, we consider 
only those portfolio’s returns that are below the so-called, 
Conditional VaR (CoVaR), which is defined as the VaR of 
the portfolio’s returns given that the market is in a crisis 
situation (market returns are below VaR). In this sense, 
5% CoVaR allows us to make statements of the form: We 
are 95% certain that portfolio returns will not be less than 
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BMO, Manulife, Great West Lifeco, and Sunlife. As a 
benchmark portfolio we use the tangency portfolio, that is, 
the portfolio on the Markowitz efficient frontier that has the 
highest expected return per unit risk (standard deviation). 
To avoid large negative portfolio positions during stressed 
market conditions, we preclude short sales. We compare 
the benchmark and developed portfolio construction 
methodology by backtesting the portfolios on daily data that 
covers the period 2007-2017. The portfolios’ performance is 
shown in Figure 3.

There are several notable features in Figure 3. First, both 
portfolios perform poorly during the 2007-2009 financial 
crisis and lose almost 50% of their value. The values of both 
portfolios significantly decline during this period because all 
stocks that we consider substantially lose in value. Second, 
and most importantly, our methodology has a superior 
performance during 2009-2012 European Sovereign Debt 
crisis when compared with the benchmark portfolio that 
loses almost 50%. Similarly, the benchmark portfolio value 
declines in the beginning of 2016 due to the declining price 
of oil, concerns regarding China’s economic slowdown, and 
a weaker Canadian dollar. On the other hand, the CoVaR 
portfolio value is fairly stable during this period. Third, the 
Markowitz tangency portfolio has higher volatility than the 
CoVaR portfolio.

CoVaR if market returns fall below VaR over, say, the next 6 
months (Figure 2).

Figure 2: The segment of market and portfolio’s returns distribution that 
correspond to stressed market and portfolio scenarios. The 
segment can be viewed as a two-dimensional analogy to the 
more commonly used “tail of return distribution”. 

The goal of our investor is to construct a portfolio that 
delivers maximal expected returns in the stressed market 
and portfolio’s return scenarios (the red segment in Figure 
2).

In the numerical part of our analysis we use five banks and 
three insurance companies: TD Bank, CIBC, RBC, Scotiabank, 

Figure 3: 	 The performance of the Markowitz tangency portfolio and the developed portfolio choice methodology (CoVaR) based on 	
	 the initial investment of $1 on January 31, 2007. The y-axis shows the USD value of the portfolios.
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Figure 4 shows the portfolio constituents for the Markowitz 
tangency and CoVaR portfolios.

Importantly, from Figure 4 it follows that the CoVaR portfolio 
is more diversified than the Markowitz portfolio for which 
Manulife is the stock with the highest value of investment 
concentration starting from 2009. On the other hand, CoVaR 
portfolios imply relatively high investment in TD Bank and 
Great-West Lifeco which have been well known to be among 
the most consistent performers.

One of the most significant outcomes of the Markowitz 
portfolio analysis is the so-called “mutual fund separation 
theorem” which states that any portfolio on the Markowitz 
efficient frontier can be replicated by any two portfolios on 
the efficient frontier. This result implies that an investor can 

achieve a desired “risk-return” trade-off on the efficient 
frontier by trading in only two mutual funds, thereby 
reducing the transaction costs. In our research we show an 
extension of the mutual fund theorem, which requires three 
mutual funds. This result is due to the fact that in addition to 
risk and return characteristics of the portfolio, our approach 
also includes portfolio’s correlation with the market, and 
therefore, more portfolios are required to obtain a desired 
“risk-return-correlation” trade-off.

Figure 4: Composition of (a) CoVaR and (b) Markowitz tangency portfolios.
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1. Introduction

As opposed to a firm’s individual risk of failure, which can be contained without harming

the entire financial system, systemic risk is the risk of collapse of the entire financial system

or market. Since the 2007–2009 financial crisis numerous attempts have been made to

identify and measure systemic risk of financial institutions (see, for example, Adrian and

Brunnermeier (2011), Brunnermeier and Cheridito (2014), Brownlees and Engle (2016),

Acharya et al. (2017)). In this respect the following question arises: how can a given

systemic risk measure be used to construct portfolios that perform relatively well when

systemic risk materializes? In this paper we develop a framework for the optimal portfolio

choice based on exogenously given systemic risk measure.

Following the general framework of Adrian and Brunnermeier (2011), we consider port-

folio returns conditioned on a systemic event which can be described as a precipitous de-

terioration of broad market conditions. In particular in our analysis we assume that there

exists a systemic risk index that reflects the broad market conditions and that investors

would like to take into account when making their portfolio decisions. On a technical level,

we simultaneously work with two measures: VaR and CoVaR. VaR of the systemic risk

index is defined as the most adverse change of the index at some prespecified level of con-

fidence; CoVaR is the VaR of the portfolio conditioned on the systemic risk index being at

(or below) its VaR level. The goal of our investor is to maximize the expected portfolio

returns conditioned on (i) the systemic risk index being at (or below) its VaR level and (ii)

the portfolio returns being below their CoVaR level. In simple terms, we seek the portfolio

that performs best in a low return environment and when the overall market is in distress.

Althought there are different ways to model systemic events (see Brownlees and Engle

(2016) and Adrian and Brunnermeier (2011), for example), we consider two formulations:

(1) when the systemic risk index is at its VaR level and (2) when the index is at most

at its VaR level. We obtain an explicit solution to our portfolio choice problem under

formulation (1) and, by analyzing its properties, we highlight the main economic intuition

for the investor’s optimal behavior under the (more complex) formulation (2). For example,

for formulation (1) the quantile parameters, that determine the values of VaR and CoVaR,

allow our investor to properly balance the relative importance of portfolio’s variance and

portfolio’s correlation with the systemic risk index. This intuition also holds for formulation

(2).
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Our work advances existing literature on portfolio choice because it is the first to account

for the role of systemic risk measures in optimal portfolio decisions. There are several contri-

butions in our efforts. First, under the joint normality assumption we obtain a closed-form

solution of the optimal portfolio weights when systemic risk index is set at the portfolio

VaR level. We obtain economic interpretation for the quantile parameters: VaR quantile

controls the importance of portfolio correlation with the index, whereas CoVaR quantile

allows the investor to manage the significance of portfolio variance. Furthermore, we estab-

lish the following mutual fund separation result: any optimal portfolio with given expected

return, variance, and covariance with systemic risk index can be replicated by only three

appropriately chosen optimal portfolios. In addition, we show that when the assets in the

portfolio are uncorrelated with systemic risk index, the optimal portfolio is mean–variance

efficient.

Second, for the formulation when systemic risk index is at most at its VaR level we

derive a closed-form expression for the investor’s objective function and show that it is

decreasing in portfolio standard deviation as well as correlation with the index. We also

find that the higher is the portfolio’s standard deviation, and the larger is the role that

portfolio’s correlation with systemic risk index plays in investor’s portfolio choice. An

intuitive explanation for this result is that when the variance of the portfolio is large, the

downside risk is large if the portfolio is highly correlated with systemic risk index (since

returns are bounded by CoVaR, negative portfolio returns become more likely). Similarly to

the other formulation, we show that the optimal portfolio becomes mean–variance efficient

when the assets are not correlated with the index.

Finally, we apply the developed model to the Canadian financial services industry (five

banks and three insurance companies) using Bloomberg daily data from January 3, 2000

to October 31, 2017. To model the joint return dynamics and to generate scenarios of

future returns we use GARCH Dynamic Conditional Correlation (GARCH–DCC) model

(see Engle (2002, 2009)). Backtesting our methodology starting from January 2006, we

find that at the times of market downturns our approach allows to avoid significant losses

during the times of market downturns as compared with the classical tangency portfolio

that we use as a benchmark. The only exception to this result is the 2007–2009 financial

crisis when prices of all stocks significantly dropped making both portfolios almost equally

lose in value.

2



A brief review of existing literature on multivariate portfolio choice is in order. Our

modelling approach is related to the tail risk measures studied by Alexander and Baptista

(2004) who study portfoio selection with VaR and CVaR constraints (see also Rockafellar

and Uryasev (2002)). However, Alexander and Baptista (2004) consider only portfolio

returns and do not consider systemic risk. Ang and Bekaert (2002) numerically solve

the asset allocation problem when there are two switching regimes in the economy with

one regime having higher volatilities and correlations. Das and Uppal (2004) model co-

movement in asset returns by introducing Poisson jumps that arrive at the same time in

a setting with a constant opportunity set. Buraschi et al. (2010) and Bäuerle and Li

(2013) study intertemporal portfolio choice when the stochastic covariance matrix of asset

returns is modelled by a Wishart diffusion process and Da Fonseca et al. (2011) extend

the framework to the complete market setting by allowing the investor to trade in variance

swaps. A more practical approach to portfolio construction in presence of systemic risk was

also studied in Biglova et al. (2014).

This paper is organized as follows. In Section 2 we discuss the assumptions made in our

modelling and provide some common notation. In Section 3 we solve the portfolio choice

problem when the systemic risk measure is assumed to be at its VaR level. In Section 4

we characterize the portfolio choice problem for more adverse scenarious of the systemic

risk measure. In Section 5 we empirically test our model on the Canadian equity market.

Section 6 concludes.

2. Assumptions and Notation

In this section we state some important assumptions made in our modelling. We also

provide some general notation that will be used throughout the paper.

Although different definitions of systemic event can be adopted, in what follows we define

it as a severe market decline or, equivalently, a precipitous drop in a market index. This

definition is similar to that of Brownlees and Engle (2016), for example, who assume that

the triggering systemic event of the financial crisis is a decline (40% drop over 6 months)

in a market index. Thus, in what follows we refer to the systemic risk index as the market

index. It is on purpose that in our analysis we avoid the use of any specific risk measure as

there is still an ongoing debate on how to measure systemic risk; we stay away from this
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discussion because it is not directly related to this research.1 In this respect, we would like

to emphasize that our model is fairly general in that any systemic risk index can be used

to model systemic risk and in this sense our approach can be regarded as a framework for

portfolio choice in presence of systemic risk.

We assume that there is no risk-free asset and there are n ≥ 2 risky assets with stochastic

rates of return r = (r1, ..., rn)T. The expected rates of return are denoted as µ = E[r]

and Σ = E
[
(r − µ)(r − µ)T

]
represents the variance–covariance matrix of rates of return

of the risky assets. The proportions of wealth invested in each of the assets are given

by w = (w1, ..., wn)T (wi is the proportion of wealth invested in asset i) implying that
n∑
i=1

wi = 1. Also we let Rp = wTr and µp = wTµ be the portfolio’s rate of return and

the portfolio’s expected rate of return, respectively. Based on this notation, the portfolio

returns’ variance is given by σ2
p = wTΣw. We also denote by µm the expected return and

by σm the standard deviation of the returns on the market index.

To gain a better understanding of the systemic risk component that is taken into account

in our portfolio choice problem, we assume that the returns on the assets in the portfolio

and the market index are jointly normal. This assumption allows us to obtain some analytic

results and to compare with other well-known portfolio choice approaches.

3. Portfolio Selection: Market is at its VaR level

In this section we consider a portfolio choice problem that assumes that the market index

is at its VaR level and the portfolio returns are below their CoVaR levels. In this regard,

we review VaR and CoVaR measures in Section and in Section 3.2 we formulate and solve

the portfolio choice problem and discuss some intuitive aspects of our model.

3.1. Exposure CoVaR of Adrian and Brunnermeier (2011). In this section we re-

view the systemic risk measure, exposure CoVaR, introduced by Adrian and Brunnermeier

1On December 18, 2014, one the largest US insurance companies, MetLife, was notified by the Fi-

nancial Stability Oversight Council (FSOC) that it had been designated a non-bank Systemically Im-

portant Financial Institution (SIFI). MetLife challenged that decision in federal court and on March 30,

2016 U.S. District Court Judge Rosemary Collyer ruled in MetLifes favor and rescinded FSOCs designa-

tion of the company as a SIFI. The Department of Justice on behalf of FSOC has appealed that deci-

sion and the case is now under consideration with the U.S. Court of Appeals for the DC Circuit. See

https://www.metlife.com/sifiupdate/index.html
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(2011). To simplify the exposition, we will refer to ”exposure CoVaR” as CoVaR in all

subsequent analysis.2 The market index’s VaR is defined as the value V aRqm such that

P (Rm ≤ V aRqm) = qm (3.1)

where Rm is the return on the market index that represents the state of a financial system.

The quantile level qm is typically chosen to be 0.1, 0.05, or 0.01. Building on the above

definition of VaR, CoVaR of a portfolio, CoV aRqp , is defined as

P
(
Rp ≤ CoV aRqp

∣∣∣Rm = V aRqm

)
= qp (3.2)

where Rp is the return on the portfolio. In other words, CoVaR is defined as the VaR of

portfolio conditional on the market being in distress. In this sense CoVaR addresses the

question what portfolios are most exposed to a financial crisis.3

From the investor’s perspective, it is of interest to find a portfolio that performs reason-

ably well not only in good times, but also when the entire financial system is in a downturn.

In this respect, portfolios that deliver a relatively high level of return and behave well in

crises are highly desirable. To somehow immunize a given portfolio against market down-

turns, systemic risk should be directly incorporated in the portfolio optimization procedure.

3.2. Portfolio choice. To formulate the portfolio choice problem in presence of systemic

risk, we consider the co-expected returns defined as

CoER= = E
[
Rp

∣∣∣Rp ≤ CoV aRqp , Rm = V aRqm

]
. (3.3)

We would like to emphasize that in (3.3) we condition on both
{
Rp ≤ CoV aRqp

}
and

{Rm = V aRqm}. The portfolio returns for the specification (3.3) are graphically illustrated

in Figure 1.

In other words, CoER= estimates the expected returns in a low return environment

when the overall market is in distress (market is at its VaR level). Thus, the portfolio

2CoVaR and ”exposure CoVaR” of Adrian and Brunnermeier (2011) differ only on the conditioned

event. In this respect, CoVaR is defined as a quantile of the market return distribution conditioned on ith

institution’s returns being at their VaR level, whereas ”exposure CoVaR” is a quantile of ith institution

return distribution conditioned on market returns being at their VaR level.
3Another systemic risk measure, SRISK of Brownlees and Engle (2016), is similar to ”exposure CoVaR”

in this sense: in SRISK calculation the conditioning is on a crisis which is defined as a 40% decrease of the

market index.
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Figure 1. Illustration of the returns on which we condition in CoER=. For

a given probability distribution of returns on the market index and portfolio

(in grey) we consider only those returns that correspond to stressed scenarios

(in red): portfolio returns are below CoVaR (Rp ≤ CoV aRqp) and market

returns are at their VaR level (Rm = V aRqm).

choice problem can be stated as

max
w

CoER= (P1)

s.t. wT1 = 1, (3.4)

where 1 = (1, ..., 1)T ∈ Rn. By solving (P1) we find the portfolio that performs relatively

well when the market is at its VaR level and portfolio’s returns are below CoVaR.

To solve the portfolio choice problem (P1), we first obtain a closed-form expression for

CoER= which allows for a more in-depth analysis of the measure.

Lemma 1. Assume that (Rp, Rm) ∼ BN (µp, µm, σp, σm, ρ) where µp (µm) is the expected

portfolio (market) return, σp (σm) is portfolio (market) return standard deviation, and

ρ ≥ 0 is the correlation between the returns on the portfolio and the market. Then we have

CoER= = µp + σp

(
ρΦ−1(qm)− 1

qp

√
1− ρ2φ

(
Φ−1(qp)

))
. (3.5)

where φ(·) (Φ(·)) is the standard normal pdf (cdf) and qm (qp) are the quantile levels in the

defitinion of VaR (CoVaR), see (3.1) and (3.2).

Proof. See Appendix A. �
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Not surprisingly, CoER= is a function of the first two moments only, which is due to

the assumption of jointly normal returns. The quantiles qp and qm that enter (3.5) can be

thought of as model parameters. It should be noticed that

dCoER=

dρ
= σp

(
Φ−1(qm) +

ρ

qp
√

1− ρ2
φ
(
Φ−1(qp)

))
(3.6)

and dCoER=

dρ < 0 if, and only if,

ρ

qp
√

1− ρ2
< − Φ−1(qm)

φ (Φ−1(qp))
(3.7)

which is not necessarily satisfied for values of ρ close to 1. In other words, for sufficiently

high values of ρ the co-expected portfolio returns in stressed market conditions increase as

the correlation with the market gets larger which is somewhat couterintuitive.

The optimal portfolio that maximizes CoER= is given in the following proposition.

Proposition 1. Let w be a vector of weights of each asset in the portfolio, then under the

assumptions of Lemma 1 we have

CoER= = wTµ̂− λ
√
wTΣ̂w (3.8)

where

µ̂ = µ+
Φ−1(qm)

σm
σ, λ =

φ
(
Φ−1(qp)

)
qp

, Σ̂ = Σ− 1

σ2
m

σσT (3.9)

with Σ being the covariance matrix of risky assets and σ being the column vector of covari-

ances of each asset with the market index.

Furthermore, if

λ >
√

∆TQ−1∆ (3.10)

the portfolio that maximizes CoER= is finite and is given by

w∗ =
Σ̂−11

1TΣ̂−11
− 1√

(λ2 −∆TQ−1∆) (1TΣ̂−11)

[
(Q−1)T∆

−1̃
T
Q−1∆

]
(3.11)

where Q, 1̃, and ∆ are given in Appendix B.

Proof. See Appendix B. �
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To further analyse the results of Proposition 1 we note that CoER= can be written as

CoER= = wTµ+
Φ−1(qm)

σm
wTσ −

φ
(
Φ−1(qp)

)
qp

√
wTΣw − 1

σ2
m

(wTσ)
2

(3.12)

= Portfolio’s Return

+
Φ−1(qm)

σm
×
(

Portfolio–Market covariance
)

−
φ
(
Φ−1(qp)

)
qp

×

√
Portfolio’s variance− 1

σ2
m

(Portfolio–Market covariance)2

which allows us the following interpretation of the model parameters.

First, the parameter qm can be thought of as controlling the weight that investor assigns

to Portfolio–Market covariance when maximizing portfolio’s CoER=. In this sense, small

qm implies large weight (large Φ−1(qm) in absolute terms) for the portfolio’s covariance with

the market. The underlying mechanism here is as follows. Relatively small qm implies that

we consider more adverse market return scenarios and, consequently, high correlation with

the market becomes particularly dangerous for portfolio returns. This results in a larger

penalty for higher (positive) correlation with the market in the objective function CoER=.

Since Φ−1(qm) is negative for qm < 0.5 (practically relevant case), investors who maximize

CoER= of their portfolios will prefer portfolios with negative correlation with the market.

In particular, when short-sales are not allowed, portfolio’s negative correlation with the

market implies that assets with negative covariance with the market (negative entries of

σ) are more attractive. Intuitively, such portfolios should pay off well in crises when the

market is in a dowturn.

Second, the parameter qp can be thought of as controlling the weight that investors put

on portfolio’s variance. In this sense, small qp implies large weight
φ(Φ−1(qp))

qp
assigned to

the portfolio’s variance (see Appendix C). Again, the mechanism that causes this behavior

is the following. Small qp implies that we consider more adverse portfolio returns. Since

these returns are bounded from above by CoV aRqp , large portfolio variance implies large

downside risk in the sense that more negative portfolio returns become more likely. As a

consequence, the penalty for large portfolio variance increases.

Careful inspection of the CoER= representation (3.12) reveals that for fixed portfolio–

market covariance (i.e., wTσ = cp) and fixed expected portfolio returns (i.e., wTµ = µp), the

8



problem of finding the maximum of CoER= reduces to the problem of finding the minimum

of the portfolio variance (i.e., wTΣw). In this respect we have the following proposition.

Proposition 2. Under the assumptions of Lemma 1, the optimal portfolio w∗ given by

(3.11) that maximizes CoER= belongs to the efficient boundary (σp, µp, cp) that is defined

as the solution to the following problem

min
w

σ2
p = wTΣw (3.13)

s.t. wT1 = 1, (3.14)

wTµ = µp, (3.15)

wTσ = cp, (3.16)

where [1, µp, cp] 6= [0, 0, 0]. The efficient boundary (σp, µp, cp) is given by the equation

σ2
p = [1, µp, cp]

(
BΣ−1BT

)−1
[1, µp, cp]

T (3.17)

where B = [1, µ, σ]T is of full rank.

Furthermore, the following separation result holds: Any optimal portfolio with given ex-

pected return and covariance with the market can be replicated by three portfolios that belong

to the efficient boundary.

Proof. See Appendix D. �

Although the optimal portfolio w∗ given in Proposition 1 (see Equation (3.11)) belongs to

the boundary (σp, µp, cp) specified by (3.17), there are points on the boundary that do not

have portfolio represenations (3.11) (see Figure 2). Put it differently, there are specifications

for the triple (σp, µp, cp) that cannot be achieved by w∗ specified by (3.11), that is, optimal

portfolios obtained by varying the parameters qm and qp.

One should notice a similarity of CoER= in (3.8) with the mean–variance portfolio

optimization. In this respect, we say that a portfolio w belongs to the mean–variance

boundary if for some µp it solves

min
w

σ2
p = wTΣw (3.18)

s.t. wT1 = 1, (3.19)

wTµ = µp. (3.20)
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Figure 2. Comparison of the efficient boundaries. Boundary (σp, µp, cp)

(squares) that solves the problem (3.13) and the boundary (black patch)

that solves the problem (P1) when qm = qp = 0.1.

Since the boundary (σp, µp, cp) satisfies an additional constraint on the portfolio covariance

with the market index (as compared with the mean–variance boundary), one should expect

the mean–variance boundary to dominate (be above) the boundary (σp, µp, cp) in (σp, µp)–

space. In other words, the portfolios that are mean–variance efficient have higher expected

returns for a given value of portfolio’s standard deviation σp. In this respect we also have

the following proposition.

Proposition 3. If all assets in the portfolio are uncorrelated with the market, that is, if

σ = 0 where 0 = (0, ..., 0)T ∈ Rn, then the portfolio w∗ given by (3.11) that maximizes

CoER= belongs to the mean–variance boundary.

Proof. See Appendix E. �

From Proposition 3 it follows that when assets are uncorrelated with the market index,

then the portfolio that maximizes CoER= is also mean–variance efficient. Next we analyze

the case of CoER≤.

4. Portfolio Selection: Market is At Most at its VaR Level

In this section we take into account more severe market moves when selecting the optimal

portfolio. To incorporate this assumption of more stressed market conditions, in Section

4.1 we modify the original definition of CoVaR of Adrian and Brinnermeier (2011) and in

Section 4.2 we analyse the portfolio choice problem.
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4.1. Modified CoVaR. Girardi and Ergün (2013) propose a modification of CoVaR where

they condition at more extreme market downturns. In particular, in their modification they

condition on Rm ≤ V aRqm instead of Rm = V aRqm , that is,

P
(
Rp ≤ CoV aRqp

∣∣∣Rm ≤ V aRqm) = qp, (4.1)

This definition allows for more severe losses (farther in the tail), i.e., those beyond V aRqm .

Furthermore, this definition of CoVaR fixes the problem discussed in Section 3.2, namely,

the fact that CoES= is not monotonic in the portfolio’s correlation ρ with the market.

4.2. Portfolio choice. Based on the definition of CoVaR (4.1) we define the co-expected

returns as

CoER≤ = E
[
Rp

∣∣∣Rp ≤ CoV aRqp , Rm ≤ V aRqm] . (4.2)

The returns on the market and the portfolio that we condition on in (4.2) are graphically

illustrated in Figure 3.

Figure 3. Illustration of the returns on which we condition in CoER≤. For

a given probability distribution of returns on the market index and portfolio

(in grey) we consider only those returns that correspond to stressed scenarios

(in red): portfolio returns are below CoVaR (Rp ≤ CoV aRqp) and market

returns are at most at their VaR level (Rm ≤ V aRqm).

Similarly to CoES=, CoER≤ estimates the expected returns in a low return environment

when the overall market is in distress (systemic risk index is at most at its VaR level). Thus,
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the portfolio choice problem can be stated as

max
w

CoER≤ (P2)

s.t. wT1 = 1. (4.3)

In other words, the optimal portfolio that solves (P2) is expected to perform well when the

market is at most at its VaR level and portfolio’s returns are below CoVaR.

In the following proposition we derive the closed-form expression for CoER≤.

Proposition 4. Assume that (Rp, Rm) ∼ BN (µp, µm, σp, σm, ρ) where µp (µm) is the ex-

pected portfolio (market) return, σp (σm) is portfolio (market) return standard deviation,

and ρ ≥ 0 is the correlation between the returns on the portfolio and the market. Then we

have

CoER≤ = µp −K(ρ; qm, qp)σp (4.4)

where K(ρ; qm, qp) > 0 and is given by

K(ρ; qm, qp) =
1

qmqp

(
φ(η1)Φ

(
η2 − ρη1√

1− ρ2

)
+ ρφ(η2)Φ

(
η1 − ρη2√

1− ρ2

))
. (4.5)

with η1 =
CoV aRqp−µp

σp
, η2 =

V aRqm−µm
σm

, and φ(·) (Φ(·)) is the standard normal pdf (cdf).

In addition, we have

dCoV aRqp
dρ

< 0,
dK

dρ
> 0. (4.6)

Proof. See Appendix F. �

Unfortunately, there is no closed-form expression for the optimal portfolio weights w∗ in

problem (P2). Thus, we perform the analysys of this case numerically.

It follows from Proposition 4 that investors who use CoER≤ as a risk measure prefer

portfolios with low standard deviation and low correlation with the market. If the function

K were independent of ρ (implying that it is also independent of w), then the portfolio choice

problem (P2) would have been equivalent to the classical mean–variance analysis (see also

Proposition 5). Thus, function K adjusts the risk as measured only by the portfolio’s

standard deviation σp to account for the correlation between the portfolio and the market.
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(a) (b)

Figure 4. Contour lines of CoER≤ for σm = 0.9 and µp = µm = 0: (a)

qm = 10% and qp = 10%, (b) qm = 10% and qp = 50%

The contour lines for CoER≤ are shown in Figure 4.4 Figure 4 reveals that the higher

the standard deviation of portfolio returns, the larger role portfolio’s correlation with the

market plays in investor’s portfolio choice. Indeed, as the standard deviation gets larger, the

level curves become steeper. In this respect it should be noticed that the top-right corners

of panels (a) and (b) in Figure 4 represent empirically relevant cases because correlation

usually increases with volatility (see Longin and Solnik (1995), Campa and Chang (1998),

Roll (1988), Black (1976)). In addition, Figure 3 (a) and (b) also supports the fact that as

the parameter qp decreases, portfolio’s correlation ρ with the market becomes less significant

for the investor because the standard deviation starts playing a larger role (see the discussion

after Proposition 1).

Since both ρ and σp depend on the weights of each asset in the portfolio, by minimizing

CoER≤ the investors choose a portfolio that strikes a proper balance between its correlation

with the market and its standard deviation (for a given expected return). For example, let

qm = qp = 10%, σm = 0.2, µm = µp = 0, and consider two portfolios:

• Portfolio A with ρA = 0.1 and σpA = 0.4 (low correlation/high variance portfolio)

• Portfolio B with ρB = 0.9 and σpB = 0.3 (high correlation/low variance portfolio)

4A very similar contour plot is obtained when the return distribution is modelled by Student t-

distribution.
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For Portfolio A we have CoER≤A = −0.77 and for Portfolio B we obtain CoER≤B = −0.80

implying that, ceteris paribus, portfolio A is preferrable even though it has higher standard

deviation. In other words, the portfolios that are optimal from the mean–variance per-

spective can actually be suboptimal when their correlation with the market is taken into

account, or equivalently, when CoER≤ is used as a risk measure.

Obviously, when the market is in a downturn investors want the portfolios that have low

correlation with the market and this is exactly what is captured by CoER≤. Indeed, by

construction CoER≤ considers the portfolio returns that are less than CoV aRqp in stressed

market conditions. However, when the market is in a downturn, low correlation between

the portfolio and the market implies higher value of CoV aRqp (since
dCoV aRqp

dρ < 0) which,

in turn, implies higher expected returns in stressed markets. Therefore, conditioned on a

systemic event {Rm ≤ V aRqm}, low correlation with the market implies higher portfolio’s

expected return and higher CoER≤.

Similarly to CoER= we have the following result.

Proposition 5. If all assets in the portfolio are uncorrelated with the market, then the

portfolio that maximizes CoER≤ belongs to the mean–variance boundary.

Proof. See Appendix G. �

Although it does not seem possible to obtain analytic expression for the optimal portfolio

weights in problem (P2), Proposition 5 provides conditions when one can obtain the optimal

portfolio weights. Indeed, Merton (1972) shows that a portfolio w belongs to the mean–

variance boundary if, and only if,

σ2
p

1/C
− (µp −A/C)2

D/C2
= 1 (4.7)

where A = 1TΣ−1µ, 1 = (1, ..., 1)T ∈ Rn, B = µTΣ−1µ, C = 1TΣ−11, and D = BC − A2.

Therefore, from Proposition 5 it follows that any portfolio that satisfies (4.7) and that

consists of assets uncorrelated with the market also maximizes CoER≤.

5. Results on Empirical Data

We now test our model on the data from the Canadian financial market. We first describe

the estimation methodolgy and then apply it when finding optimal portfolios.
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5.1. Estimation methodology. In this section we describe the methodology that will be

used to implement and test the portfolio optimization problem (P2). Although the model

described in Section 4 is a one-period model, we will use dynamic approaches to estimate

distributions of returns. We explicitly indicate the time dependency of the variables by

adding the subscript t, and for example, instead of ri we will write ri,t to indicate the rate

of return at time t.

5.1.1. GARCH Dynamic Conditional Correlation (DCC) modelling. Let the logarithmic

returns be denoted as r̃t = (r̃1,t, ..., r̃n+1,t)
T where r̃i,t = ln(1 + ri,t), i = 1, ..., n + 1 and

(n + 1)st return is the return on the market index. We assume that conditional on the

information set Ft−1 available at time t− 1, the returns have an (unspecified) distribution

D with zero mean and time-varying covariance

r̃t | Ft−1 ∼ D(0, DtCtDt) (5.1)

where D2
t is the diagonal matrix with variances σ2

i,t of r̃i,t on the main diagonal.

We will use GJR–GARCH model of Glosten et al. (1993) to model the dynamics of

variances, that is,

σ2
i,t = ωV i + αV ir̃

2
i,t−1 + γV ir̃

2
i,t−1Ii,t−1 + βV iσ

2
i,t−1, (5.2)

where

Ii,t =

{
1, if r̃i,t < 0

0, otherwise,
(5.3)

The correlation matrix is modelled for the volatility adjusted returns εt = D−1
t r̃t by

Ct = diag(Qt)
−1/2Qt diag(Qt)

−1/2 (5.4)

where Qt is the pseudo-correlation matrix. The Dynamic Conditional Correlation (DCC)

model then specifies the dynamics of the matrix Qt as

Qt = (1− αC − βC)C + αCεt−1ε
T
t−1 + βCQt−1, (5.5)

where C is the unconditional correlation matrix. The model is typically estimated by a

two-step quasi-maximum likelihood estimation procedure (see Engle (2009)). We will refer

to the above model specification as GARCH–DCC. The GARCH–DCC methodology is

widely used in financial time series analysis as this class of models is parsimonious and is

able to capture well many stylized facts of financial data.
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5.1.2. Future returns scenarios generation. After the parameters of the GARCH–DCC

model have been estimated, we can use them to obtain the distribution of future returns

(see also Brownlees and Engle (2016)). In what follows we assume parameters to be known

while in practice we use estimated parameters using all of the information available up to

the current time T . Let h be the length of the time horizon for which the returns should

be simulated. We generate future returns scenarios according to the following procedure.

(1) Obtain the standardized innovations

εt =
(
UT
t

)−1
εt, t = 1, ..., T, (5.6)

where U is the upper-triangular matrix in the Cholesky decomposition of the cor-

relation matrix Ct.

(2) Sample with replacement S×h vactors of standardized innovations εt and use them

to construct S pseudo samples of GARCH–DCC innovations over the horizon h,

that is,

εsT+t, t = 1, ..., h, s = 1, ..., S. (5.7)

(3) Use the pseudo samples from step 2 as inputs to GARCH–DCC model using as

initial conditions the last values of the correlation matrix CT and variances σ2
iT .

This step delivers S pseudo samples of GARCH–DCC logarithmic returns from

time T + 1 to time T + h conditional on the realized process up to time T , that is,

r̃sT+t, t = 1, ..., h | FT , s = 1, ..., S. (5.8)

(4) Evaluate the multi-period return for each sample

rsT+h = exp

(
h∑
t=1

r̃sT+h

)
− 1. (5.9)

The simulated future returns rsT+h are then used in the optimization procedure.

5.2. Optimal portfolios. In this section we empirically test our model. To generate the

scenarious of future returns we use the GARCH–DCC model (see Engle (2002), (2009))

and apply the methodology to obtain ranking of Canadian financial institutions (five banks

and three insurance companies) based on their systemic risk–return characteristics. In

particular, we consider TD Bank, CIBC, RBC, Scotiabank, BMO, Manulife, Great West

Lifeco, and Sunlife. Our choice of the Canadian financial services industry is primarily due
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to its size as the banking and insurance sectors in Canada are represented by a relatively

small number of companies and this, in turn, reduces the computational complexity of our

estimation methodology (see Appendix 5.1). As a market index we use MSCI World Index

(see also Brownlees and Engle (2016)). To estimate the parameters of the GARCH–DCC

model we use Bloomberg data from January 3, 2000 until October 31, 2017. All time

series are converted into Canadian dollars based on end-of-day exchange rates reported by

Bloomberg. Table 1 provides the summary for model parameter estimates.

Table 1. The quantiles of GARCH–DCC parameter estimates based on the

sample that spans January 3, 2006 to October 31, 2017 estimated for the

firms in each category (banks, insurance companies) and the market index.

The values are reported in form (10%,50%,90%)-quantiles.

Banks Insurance Companies Market Index

ωV (0.0126, 0.0277, 0.0789) (0.0179, 0.0290, 0.0428) (0.0066, 0.0103, 0.0113)

αV (0.0340, 0.0613, 0.0780) (0.0180, 0.0475, 0.0772) (0.0000, 0.0017, 0.0065)

βV (0.8397, 0.8920, 0.9318) (0.8748, 0.9205, 0.9330) (0.9336, 0.9399, 0.9551)

γV (0.0425, 0.0630, 0.1030) (0.0364, 0.0676, 0.0880) (0.0733, 0.0865, 0.0924)

αC (0.0074, 0.0080, 0.0095) (0.0074, 0.0080, 0.0095) (0.0074, 0.0080, 0.0095)

βC (0.9507, 0.9826, 0.9843) (0.9507, 0.9826, 0.9843) (0.9507, 0.9826, 0.9843)

The summary statistics on parameter estimates given in Table 1 reveals that the point

estimates of the GJR–GARCH parameters are in line with the typical GJR–GARCH pa-

rameter estimates (see Engle (2002), (2009), Brownlees and Engle (2016)). Except for the

intercept, DCC model parameter estimates are also close to the typical set of estimates and

the parameters are similar across groups. One should also notice slightly different values of

the asymmetric coefficient γV between financial institutions and the market index implying

higher sensitivity of the market to large volatility increases in case of a drop in the index’s

value.

Next we backtest our model on daily data starting from January 3, 2001. We assume that

our investor rebalances his/her portfolio every month starting from January 2007. Thus,
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at the beginning of every month we generate S = 500, 000 monthly return scenarios (see

Section 5.1.2) and use these future scenarios to find the optimal portfolios. The failry large

number of generated scenarios ensures that we have a good representation of extreme market

events. As a benchmark portfolio we use the tangency portfolio, that is, the portfolio on

the mean–variance boundary that has the highest expected return per unit risk (standard

deviation). To avoid large negative portfolio positions during stressed market conditions,

we preclude short sales. The portfolios’ performance is shown in Figure 5.

Figure 5. Out-of-sample performance of tangency and CoER≤ portfolios

(qm = qp = 0.1) with monthly rebalancing and $1 as an initial investment

on January 31, 2007.

There are several notable features in Figure 5. First, both portfolios perform poorly

during the 2007–2009 financial crisis and lose almost 50% of their value. The values of

both portfolios significantly decline during this period because all stocks that we consider

substantially lose in value. Second, and most importantly, CoER≤ portfolio has a superior

performance during 2009–2012 European Sovereign Debt crisis when compared with the

benchmark portfolio that loses almost 50%. Similarly, the benchmark portfolio value de-

clines in the beginning of 2016 due to the declining price of oil, concerns regarding China’s

economic slowdown, and a weaker Canadian dollar. On the other hand, the CoER≤ port-

folio value is fairly stable during this period. Third, the tangency portfolio has higher
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volatility than the CoER≤ portfolio. In summary, the CoER≤ portfolio has an overall su-

perior performance due to its relatively stable performance in periods of market downturns.

Next we look at ranking of financial institutions based on the relative proportions of their

equities in the optimal portfolios. The institutions that have relatively high proportions

in the optimal CoER≤ portfolio can be viewed as more attractive from ”systemic risk–

return” perspective. In this sense, this ranking is more valuable for investors than a more

common, pure ”systemic risk” ranking. For example, it is not clear what proportion of

wealth investors should allocate to the institution that is ranked as, say, third according to

some systemic risk ranking methodology. Figure 6 shows the portfolio constituents for the

tangency and CoER≤ portfolios.

Importantly, from Figure 6 it follows that CoER≤ portfolio is more diversified than

the tangency portfolio for which Manulife is the predominant equity starting from 2009.

On the other hand, CoER≤ portfolio implies relatively high investment in TD Bank and

Great-West Lifeco which have been well known to be among the most consistent performers.

6. Conclusions

In this paper we develop a model for portfolio choice in presence of systemic risk. Our

modeling approach is based on two risk measures: VaR and CoVaR. The goal of the investor

is to maximize the portfolio’s expected returns conditioned on a systemic risk index being

at (at most at) its VaR level and the portfolio’s returns being below their CoVaR level.

Under some assumptions we derive the optimal portfolio in closed form. The parameters

of the model allow the investor to properly balance portfolio’s variance, expected return,

and correlation with the systemic risk index. We show that any optimal portfolio with

given expected return, variance, and covariance with the index can be replicated by three

appropriately chosen portfolios. The optimal portfolio becomes mean–variance efficient

when the assets are not correlated with the index. We apply our model to the Canadian

equity market and by backtesting our methodology we find that at the times of market

downturns our portfolio performs substantially better than the classical tangency portfolio

that we use as a benchmark. In addition, we apply our model to ranking of financial

institutions based on their share in the optimal portfolio and demonstrate that the most

consistent performers have relatively large share in the optimal portfolio.
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(a) Composition of CoER≤ portfolio

(b) Composition of tangency portfolio

Figure 6. (a) CoER≤ and (b) tangency portfolios’ composition.

Appendix A. Proof of Proposition 1

Let X ∼ N (µ, σ2) then from the definition of VaR

∫ V aRq

−∞

1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx = q (A.1)

we have

V aRq = µ+ σΦ−1 (q) . (A.2)
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The Expected Shortfall is given as

ES =
1

q

∫ V aRq

−∞

x

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx

= µ− σ

q
φ
(
Φ−1 (q)

)
. (A.3)

Let (X,Y ) ∼ BN (µx, µy, σx, σy, ρ). For fixed Y = y it is well known that

X|Y = y ∼ N
(
µx + ρσx

y − µy
σy

, σ2
x(1− ρ2)

)
(A.4)

Let Rp = X and Rm = Y . Since CoVaR is defined as the VaR of the portfolio given that

the market is at its VaR level (i.e., we fix Rm at its VaR level V aRqm = µm +σmΦ−1 (qm))

and applying (A.4) with (A.3), we have

CoER= = µp + ρσp
V aRqm − µm

σm︸ ︷︷ ︸
µ in (A.3)

− σp
qp

√
1− ρ2︸ ︷︷ ︸

σ
q

in (A.3)

φ
(
Φ−1(qp)

)

= µp + σp

(
ρΦ−1(qm)− 1

qp

√
1− ρ2φ

(
Φ−1(qp)

))
. (A.5)

Appendix B. Proof of Proposition 1

Let us write the covariance matrix of returns on all assets and the market index as

[
Σ σ

σT σ2
m

]
(B.1)

where σ is the column vector of covariances of each asset with the market index. The joint

distribution of portfolio’s return and the market index return is bivariate normal with the

mean vector [wTµ, µm] and the covariance matrix

[
wTΣw wTσ

wTσ σ2
m

]
=

[
σ2
p wTσ

wTσ σ2
m

]
. (B.2)
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Since the portfolio correlation with the market is ρ = wTσ/σmσp, we have from (A.5) that

CoER= = µp + σp

(
ρΦ−1(qm)− 1

qp

√
1− ρ2φ

(
Φ−1(qp)

))

= wTµ+
√
wTΣw

 wTσ

σm
√
wTΣw

Φ−1(qm)− 1

qp

√
1−

(
wTσ

σm
√
wTΣw

)2

φ
(
Φ−1(qp)

)
= wTµ+

Φ−1(qm)

σm
wTσ −

φ
(
Φ−1(qp)

)
σmqp

√
σ2
mw

TΣw − wTσσTw

= wT

(
µ+

Φ−1(qm)

σm
σ

)
−
φ
(
Φ−1(qp)

)
σmqp

√
σ2
mw

T

(
Σ− 1

σ2
m

σσT
)
w

= wTµ̂− λ
√
wTΣ̂w (B.3)

where

µ̂ = µ+
Φ−1(qm)

σm
σ, λ =

φ
(
Φ−1(qp)

)
qp

, Σ̂ = Σ− 1

σ2
m

σσT. (B.4)

From Landsman (2008,a) it follows that the maximum of (B.3) under the constraint

wT1 = 1 is reached at

w∗ =
Σ̂−11

1TΣ̂−11
− 1√

(λ2 −∆TQ−1∆) (1TΣ̂−11)

[
(Q−1)T∆

−1̃
T
Q−1∆

]
(B.5)

where ∆ = µ̂n1̃− ˜̂µ, ˜̂µ = [µ̂1, ..., µ̂n−1]T, 1̃ = (1, ..., 1)T ∈ Rn−1, Q = Σ̃−1̃σ̃T−σ̃1̃
T

+σnn1̃1̃
T

,

and

Σ̂ =

[
Σ̃ σ̃

σ̃T σnn

]
(B.6)

privided that

λ >
√

∆TQ−1∆. (B.7)

The restriction (B.7) is to ensure a finite solution.

Appendix C. Proof of dλ
dqp

< 0

To show that dλ
dqp

is negative, we evaluate

dλ

dqp
=

d

dqp

(
φ
(
Φ−1(qp)

)
qp

)
= −

qpΦ
−1(qp) + φ

(
Φ−1(qp)

)
q2
p

(C.1)
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where we used the inverse function theorem. Clearly, d
dqp

(
φ(Φ−1(qp))

qp

)
< 0 is equivalent to

qpΦ
−1(qp) + φ

(
Φ−1(qp)

)
> 0. (C.2)

Let x = Φ−1(qp), then inequality (C.2) becomes f(x) := xΦ(x) + φ(x) > 0 which is true

because df
dx = Φ(x) > 0 and lim

x→−∞
f(x) = 0 where we applied L’Hospital’s rule twice to the

fraction x
1/Φ(x) .

Appendix D. Proof of Proposition 2

From Landsman (2008,b) we have the following solution to the constrained quadratic

problem

w∗∗ = Σ−1BT
(
BΣ−1BT

)−1
[1, µp, cp]

T (D.1)

which yields the efficient boundary

σ2
p = (w∗∗)T Σw∗∗ = [1, µp, cp]

(
BΣ−1BT

)−1
[1, µp, cp]

T. (D.2)

To see that the optimal portfolio w∗ (see (3.11)) belongs to the efficient boundary one

should substitute (w∗)T Σw∗, (w∗)T µ, (w∗)T σ, for σ2
p, µp, cp, respectively, in (D.2). With

this substitution, the equality holds.

Next, we establish the separation result. Consider the portfolios specified by the following

vectors pi = [1, µp,i, cp,i]
T, i = 1, 2, ..., Np and assume that we want to replicate a portfolio

specified by p̄ = [1, µ̄p, c̄p]. Let αi be the proportion of wealth invested in each portfolio,

then applying (D.1) we have

Np∑
i=1

αiw
∗∗
i = Σ−1BT

(
BΣ−1BT

)−1

 Np∑
i=1

αipi

 (D.3)

which is equal to

Σ−1BT
(
BΣ−1BT

)−1
[1, µ̄p, c̄p]

T (D.4)

if and only if

Np∑
i=1

αipi = p̄. (D.5)

From the system (D.5) it is clear that, in general, three protfolios (Np = 3) are required

to guarantee the replication provided that det ([p1, p2, p3]) 6= 0.
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Appendix E. Proof of Proposition 3

If σ = 0, then from (3.9) we have that µ̂ = µ and Σ̂ = Σ. Merton (1972) shows that a

portfolio w belongs to the mean-variance boundary if and only if

σ2
p

1/C
− (µp −A/C)2

D/C2
= 1 (E.1)

where A = 1TΣ−1µ, 1 = (1, ..., 1)T ∈ Rn, B = µTΣ−1µ, C = 1TΣ−11, and D = BC − A2.

It is straightforward to verify that w∗ in (3.11) solves (E.1).

Appendix F. Proof of Proposition 4

We use the results from Kan and Robotti (2016). On page 17, for (X1, X2) ∼ BN (m,Σ)

where Σ is the correlation matrix (σ11 = σ22 = 1, σ12 = σ21 = ρ), the authors provide the

expression for the first moment of the lower truncated random variable Z1, that is,

E[Z1] := E[X1|a1 < X1, a2 < X2] = m1 +
φ(η1)Φ(w2·1) + ρφ(η2)Φ(w1·2)

Φ2(η1, η2; ρ)
(F.1)

where

ηi = mi − ai, (F.2)

Φ2(η1, η2; ρ) =
1

2π
√

1− ρ2

∫ η1

−∞

∫ η2

−∞
exp

(
−(x2 + y2 − 2ρxy)

2(1− ρ2)

)
dx dy, (F.3)

wi·j = (ηi − ρηj)/
√

1− ρ2. (F.4)

The result for general Σ can be obtained by replacing ai with ai/σi, mi with mi/σi, and

multiplying the result by σ1.

To obtain the first moment of the upper truncated bivariate normal random variable one

should notice that (−X1,−X2) ∼ BN (−m,Σ), and thus, replace m with −m, a with −b,
and multiply the result by −1. In other words, we have

E[X1|X1 < b1, X2 < b2] = m1 − σ1
φ(η1)Φ(w2·1) + ρφ(η2)Φ(w1·2)

Φ2(η1, η2; ρ)
(F.5)

where ηi = (bi −mi)/σi. Since in our case Φ2(η1, η2; ρ) = qmqp, we obtain the result (4.4).
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Since normal cdf and pdf are positive functions and ρ ≥ 0, we also have K(ρ; qmqp) > 0.

Furthermore, from the definition of CoV aRqp we have the following

P
(
Rp ≤ CoV aRqp

∣∣∣Rm ≤ V aRqm) = qp (F.6)

⇐⇒P
(
Rp − µp
σp

≤
CoV aRqp − µp

σp

∣∣∣Rm − µm
σm

≤ V aRqm − µm
σm

)
= qp (F.7)

⇐⇒P
(
n1 ≤ η1

∣∣∣n2 ≤ η2

)
= qp, (F.8)

where (n1, n2) have a bivariate standard normal distribution. Therefore, η1 and η2 are

independent of µp, µm, σm, and σp implying that K(ρ; qm, qp) is also independent of these

parameters.

Next we show that function K is strictly increasing in correlation ρ. For compactness of

notation in this appendix we will use X and Y instead of Rp and Rm, respectively. Thus,

let (X,Y ) ∼ BN (µx, µy, σx, σy, ρ), and define ξ1 := (x− µx)/σx, and ξ2 := (y− µy)/σy. As

is well known, a bivariate normal pdf can be written as

1

2πσxσy
√

1− ρ2
exp

(
−(ξ2

1 + ξ2
2 − 2ρξ1ξ2)

2(1− ρ2)

)
=

1

σxσy
√

1− ρ2
φ

(
ξ1 − ρξ2√

1− ρ2

)
φ (ξ2) (F.9)

=
1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) .

(F.10)

Therefore, the bivariate normal cdf becomes

P(X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞

1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dy dx

=

∫ a−µx
σx

−∞

∫ b−µy
σy

−∞

1√
1− ρ2

φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ2 dξ1

=

∫ a−µx
σx

−∞

1√
1− ρ2

φ (ξ1)

∫ b−µy
σy

−∞
φ

(
ξ2 − ρξ1√

1− ρ2

)
dξ2 dξ1

=

∫ a−µx
σx

−∞
φ (ξ1)

∫ b−µy
σy

−ρξ1√
1−ρ2

−∞
φ (z) dz dξ1

=

∫ a−µx
σx

−∞
Φ

 b−µy
σy
− ρξ1√

1− ρ2

φ (ξ1) dξ1 (F.11)
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It is also well known (see, for example, the Appendix in Sibuya (1960)) that

d

dρ

∫ c1

−∞
Φ

(
c2 − ρz√

1− ρ2

)
φ (z) dz = φ2(c1, c2; ρ) (F.12)

where c1 and c2 are given constants and φ2 denotes the pdf of a standard bivariate normal

distribution (see also (F.3) for the cdf of a standard bivariate normal distribution). The

result (F.12) will be used later.

To make our notation concise, let a = CoV aRqp and b = V aRqm , then from (F.11), the

definition of CoV aRqp (see (4.1)), and the definition of V aRqm (see (3.1)) we have

P(X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞

1

σxσy
√

1− ρ2
φ

(
ξ2 − ρξ1√

1− ρ2

)
φ (ξ1) dy dx = qmqp

⇐⇒
∫ a−µx

σx

−∞
Φ

 b−µy
σy
− ρξ1√

1− ρ2

φ (ξ1) dξ1 = qmqp

⇐⇒
∫ η1(ρ)

−∞
Φ

(
η2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ1 = qmqp (F.13)

where we used the definition of η1 = (a − µx)/σx and η2 = (b − µy)/σy. Notice that η2

is independent of ρ because marginal distributions of a bivariate normal distribution are

independent of the correlation parameter and it is only the marginal distribution of Y that

is used to evaluate V aRqm .

Implicit differentiation of (F.13) with respect to ρ yields

Φ

(
η2 − ρη1(ρ)√

1− ρ2

)
φ (η1(ρ))

dη1

dρ
+

∫ η1(ρ)

−∞

d

dρ
Φ

(
η2 − ρξ1√

1− ρ2

)
φ (ξ1) dξ1︸ ︷︷ ︸

=φ2(η1,η2;ρ)

= 0 (F.14)

where we applied (F.12). Thus, using (F.10) we obtain

dη1

dρ
= −

1√
1−ρ2

φ

(
η2−ρη1√

1−ρ2

)
Φ

(
η2−ρη1√

1−ρ2

) . (F.15)

In addition, from the definition of CoV aRqp and from (F.15) we have that
dCoV aRqp

dρ < 0.
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Finally, we differentiate K(ρ; qm, qp) given by (4.5) with respect to ρ. First we evaluate

d

dρ

(
η2 − ρη1√

1− ρ2

)
=
ρ
(
η2 − (1− ρ2)dη1

dρ

)
− η1

(1− ρ2)3/2
, (F.16)

d

dρ

(
η1 − ρη2√

1− ρ2

)
= −

η2 − (1− ρ2)dη1
dρ − ρη1

(1− ρ2)3/2
, (F.17)

d

dx
φ(x) = −xφ(x). (F.18)

Differentiation of the first term in the brackets of K(ρ; qm, qp) (see its definition (4.5)) yields

d

dρ

(
φ(η1)Φ

(
η2 − ρη1√

1− ρ2

))
=

ρ√
1− ρ2

φ(η1)φ

(
η2 − ρη1√

1− ρ2

)
︸ ︷︷ ︸

=ρφ2(η1;η2;ρ)

(
η2 − ρη1

1− ρ2
− dη1

dρ

)
(F.19)

where we used (F.15). For the second term in the brackets of K(ρ; qm, qp) we have

d

dρ

(
ρφ(η2)Φ

(
η1 − ρη2√

1− ρ2

))
=φ(η2)Φ

(
η1 − ρη2√

1− ρ2

)
(F.20)

+
ρ√

1− ρ2
φ(η2)φ

(
η1 − ρη2√

1− ρ2

)
︸ ︷︷ ︸

=ρφ2(η1;η2;ρ)

(
dη1

dρ
− η2 − ρη1

1− ρ2

)
.

(F.21)

Thus, we have

dK

dρ
=

1

q2
φ(η2)Φ

(
η1 − ρη2√

1− ρ2

)
> 0. (F.22)

Appendix G. Proof of Proposition 5

Let us write the covariance matrix of returns on all assets and the market index as[
Σ σ

σT σ2
m

]
(G.1)

where σ is the column vector of covariances of each asset with the market index. The joint

distribution of portfolio’s return and the market index return is bivariate normal with the

mean vector [wTµ, µm] and the covariance matrix[
wTΣw wTσ

wTσ σ2
m

]
=

[
σ2
p wTσ

wTσ σ2
m

]
. (G.2)
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Since ρ = wTσ/σmσp, we have that if the assets are uncorrelated with the market index

then ρ = 0. Thus, it follows that K(ρ; qm, qp) = K(0; qm, qp) and it is independent of the

portfolio weights w. Therefore, subject to the constraint wTµ = µp we have

max
w

CoER≤ = min
w
K(0; qm, qp)σp = K(0; qm, qp) min

w
σp. (G.3)
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