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Abstract

The study of financial system stability is of fundamental importance in modern economies. The failure or distress
experienced by systemically important financial institutions can have contagious effects on the rest of the financial
system. This may in turn result in deteriorating macroeconomic conditions and price instability, with negative
consequences and spillover effects to other sectors of the real economy. This tutorial surveys the different
approaches to systemic risk modeling put forward by the academic and practitioner literature. We review the
method-ologies, with a focus on the relevant economic forces in play and the mechanisms leading to systemic
instabilities. We discuss macroprudential, monetary and resolution policies targeting financial stability. We report
the supervisory authorities of the different financial institutions, as well as the current barriers to data sharing.
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1 Introduction

The global interconnectedness of today’s financial systems, and the numerous channels along which distress can
propagate and affect other economic sectors, has been subject of considerable investiga-tion. Early studies on
network resilience and systemic risk were conducted before the great recession (Allen and Gale (2000), Eisenberg
and Noe (2001)), but research efforts have greatly intensified after it. The credit quality deteriorations and default
events experienced by investment banks and mono-line insurances starting from the year 2007 have highlighted the
fragility of the financial system, as well as the critical role played by the complex network of contractual
dependencies.

There are two main forms of linkages arising between financial institutions. The first is via counterparty risk (Battiston
et al. (2012), Capponi (2013), Eisenberg and Noe (2001), Glasserman and Young (2015)), and comes from the fact
that institutions share risk through derivatives trading and interbank loans, thus incurring losses if their trading
counterparties fail or enter into a distressed state. Under certain circumstances, counterparty related losses may
lead to the insolvency of creditors who were relying on these payments to fulfill their obligations. A second form of
contagion propagation is via common balance sheet holdings. In this case, forced sale of illiquid assets done by
institutions who need to meet redemption requests or satisfy regulatory requirements may depress prices if their
selling pressure cannot be adequately satisfied by unconstrained buyers. These price drops may in turn cause
troubles to institutions holding the same assets on their



Research funded by GLOBAL RISK INSTITUTE

balance sheets, leading to liquidity spirals and generating fire-sales externalities (Brunnermeier and
Pedersen (2009), Shleifer and Vishny (1992, 2011), Capponi and Larsson (2015)).

This tutorial surveys the models proposed in the literature to measure systemic risk. Those
include bottom-up approaches whose aim is to model the direct interaction between banks as well as
the interconnectdness of their balance sheets, and top down approaches whose goal is to quantify the
contribution to the overall system distress caused by each institution, typically achieved via the
specification of a risk measure (Adrian and Brunnermeier (2016), Brownlees and Engle (2015),
Acharya et al. (2012)). We survey both the underlying models and mathematical techniques that
have been used for quantifying negative externalities caused by financial instability, and empirical
literature on systemic risk measurements. We discuss preventive and resolution policies, designed to
enhance the resilience of the whole financial system and minimize the inefficiencies arising when
assets of defaulted institutions need to be liquidated. Those include macroprudential policies tar-
geting financial stability, monetary policies aimed at preserving price stability, structural policies
imposing constraints on the network infrastructure, and policies targeting the resolution of bank
failures. We also highlight the key elements of policies aimed at categorizing systemically impor-tant
financial institutions. An impediment to systemic risk analysis is the lack of a comprehensive dataset
for the analysis of macro-financial linkages. We dedicate one section to describe the rela-tion between
regulatory authorities and supervised financial institutions. This provides guidance on which
regulatory autorities are responsible for collecting datasources related to the different financial
institutions, and hence facilitates the task of researchers and specialists relying on these data for
systemic risk analysis.

The present tutorial complements the existing surveys on the subject. These include the excel-
lent survey by Bisias et al. (2012) whose primary focus is on the collection of systemic risk measures
proposed in the literature, including those based on macroeconomic factors, network and illiquidity
measures, and stress testing. Another recent survey on the field has been written by Benoit et al.
(2015), and is focused primarily on systemic risk measures and their empirical evaluations. We also
refer to Staum (2013) for an early survey on systemic risk models but centered primarily on the
network of counterparty relationships.

The rest of the chapter is organized as follows. Section 2 discusses the approaches to sys-temic
risk modeling. Section 3 discusses policies. Section 4 discusses the dependence of financial institutions
on their supervisory authorities and barriers to systemic risk data. Section 5 concludes.

2 Systemic Risk Modeling

This section provides a categorization of systemic risk models into two groups, referred to as
bottom-up and top-down models.

2.1 Bottom-up Models

The current literature has put forward two main bottom-up approaches to systemic risk modeling.
The first approach is based on a network representation of the financial system in which institu-tions
are connected via direct counterparty exposures. The vast majority of the literature takes the
network of interbank relations as given (see sections 2.1.1 and 2.1.3), while a more recent branch
studies the formation of this network (see Section 2.1.2). The second approach models the inter-
dependence of balance sheet holdings of financial institutions, which take losses when asset prices



are hit by liquidity shocks (see Section 2.1.5). These two approaches have also been combined to produce
hybrid models (see Section 2.1.6). Another class of models is designed to analyze spread-ing of contagion
via informational effects (see Section 2.1.4), triggered by loss of confidence in the banks’ performance.

2.1.1 Financial Networks

The network model provides a convenient representation of bilateral exposures arising from contrac-tual
obligations between counterparties, and allows to analyze the propagation of contagion effects within the
network. The inability of an institution to fulfill its liabilities may induce distress on its creditors in the
network, which rely on these payments to meet their own liability obligations. This risk is usually referred
to as counterparty risk (see Capponi (2013) for a survey) and has been at the heart of losses and credit
quality deteriorations experienced by monoline insurers and investment banks during the great recession.
The seminal paper by Allen and Gale (2000) models contagion risk using equilibrium theory. They connect
the network structure to the fragility of the financial system. They also analyze the role of the central bank
in avoiding systemic crisis. Their model of payment flows allows to capture propagation of financial crises
in an environment where both liquidity and solvency shocks affect financial intermediaries. Several follow-
up studies have been conducted to analyze the systemic consequences of initial shocks arising in a
particular area of the network.

We next describe the basic setup of a static financial network consisting of n nodes, representing
financial institutions, and position ourselves in an ex-post economic scenario, i.e. where asset shocks
have already occurred. Let L > R{;" be the interbank liability matrix with l;; denoting the amount of
liabilities owed by i to j, and ¢ > RY, be the vector of (non-interbank) assets. Throughout the
section, all vectors are considered to be row vectors. The component ¢; can be interpreted as the
total value of mortgage, real estate, and corporate bond asset holdings of bank i after the
occurrence of market shocks. Denote the total liability vector by ¢ > R, where /;= }’;1 l;jis the total
amount of obligations that bank i has toward the rest of the network. Let 6;> [0, 1] be the fraction of
liabilities that bank i is able to repay. If bank i is solvent, then it is able to repay liabilities in full and 6;=1;
otherwise, it will only be able to partially repay its liabilities and 8;< 1. The total asset value of bank i is
given by F=1 Bjl;; + ci. If it is less than bank i’s total liabilities, bank i defaults. Such a default may be directly
caused by asset shocks, i.e., in the absence of all

other defaults, P}‘zl l;i +ci < 4i. In this case, the default is fundamental; or, it may be triggered by the
reduced payments received by other banks in the network, in which case we refer to the default as
contagious.

Eisenberg and Noe (2001) develop an elegant framework, in which interbanking liabilities are cleared
consistently with the laws of bankruptcy, to endogenously determine the recovery rate, 6;, for each bank
i. Concretely, denote by
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the proportion of liabilities owed by i to j. The payments made by the nodes in the network when the
interbank liabilities are cleared is denoted by p”and is a solution to the system of fixed point equations

=0, (pN+c) (1)



where z Ay = (min{z1,y1},...,min{z,,y,}) for z,y € R™. In this model, 6; = ZZ—; fori=1,...,n.
Eisenberg and Noe (2001) provide conditions guaranteeing the uniqueness of the fixed point (a
sufficient condition is that the vector of noninterbank assets is strictly positive in all entries).
Moreover, they characterize the fixed point in terms of the solution of a linear programming problem
given by

max  f(p)
p

st. p<pll+c
pe[0,4]

where f is a component-wise strictly increasing function with respect to the vector p. They also
provide an algorithm, referred to as the fictitious default algorithm, to identify the sequence of
defaulted institutions and illustrate how contagion propagates through the financial network. To
be more specific, in each step k we use p* to denote the payments made by all institutions and let
A(p*) be the nxn diagonal matrix indicating the institutions which default in step k. Equivalently,
the i-th diagonal entry of A(p*) is defined by

1 if (pkH+c). <t;
Aii(p") = Lo
i) {0 else

This indicates that when the total asset value of institution ¢ (including interbank and non-interbank
assets) is smaller than its total liabilities, institution ¢ would not repay its liabilities in full and
default. Set p':=¢. For k=2,3..., the payment vector p* is determined via an iterative procedure
consisting in repeatedly solving the following fixed point equation:

P =[P AQMY) + 0T - AP [T+ ] AT+ £(T-ARPE))

payments made by payments made by
the defaulted institutions the solvent institutions
in step k-1 in step k-1

If A(p*) = A(p*1), then the algorithm stops and p* = p*. Eisenberg and Noe take the number of
steps needed for institution ¢ to default as a measure of the institution i’s exposure to the systemic
risk, i.e. institution ¢ is more fragile than j if the number of steps before i defaults is smaller than
the number of steps before j defaults.

Example 1. We apply the fictitious default algorithm to the network in Figure 1. In step 1, p' =/
and

0 017 0.17 0.66
017 0 0.17 0.66
0.17 017 0 0.66
0.17 033 050 O

p'Il+c=(100 100 100 100) +(15 15 20 20)=(66 82 104 218).

This indicates that bank 1 and 2 default as the payments made by them are smaller than their
outstanding liabilities (see the network on left in Figure 1); hence,

A(p') =

o O O
S O = O
o O O O
o O O O
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15@ 17/17 ®20 15@ 13/17 ®20 15@ 12/17 ®20
Step 1 Step 2 Step 3
Step(k) 1 2 3

pF ( 100, 100, 100, 100) | ( 62, 75, 100, 100) | ( 59, 73, 92, 100)
PP +c (66, 82, 104, 218) (62, 75,93,177) | (59, 73, 92, 170)
Defaulted Institution 1,2 1,2,3 1,2,3

Figure 1: The steps of the fictitious default algorithm on a financial network in which ¢ =
(100, 100,100,100) and ¢ = (15,15,20,20). The ratio x/y placed on the edge directed from i to
7 in step k means that the liabilities of institution ¢ to j is y, while the payment made by ¢ to j is
x in step k.

Then, in step 2, we obtain p? = (62,75,100,100) by solving the following equation
P* = [[PPA(") + (T =A@ ) I+ ] MY +£(1 - AGH)).

Next, using p?, we can construct A(p?) and solve the fived point equation to derive p3 in step 3.
Since A(p?) = A(p*), the algorithm terminates at k = 3. Figure 1 illustrates the propagation of
contagion through a financial network of four institutions using the fictitious default algorithm.
Both institutions 1 and 2 default in step 1. This triggers default of institution 3 in the second step,
while institution 4 remains solvent in all steps.

Rogers and Veraart (2013) and Glasserman and Young (2015) enrich the Eisenberg-Noe frame-
work by adding bankruptcy costs. The model introduced by Rogers and Veraart (2013) captures
the loss from assets liquidation arising at default. They use two constants «, 3 € (0,1] to repre-
sent, respectively, the recovery rate of non-interbank and interbank assets at default. When an
institution ¢ defaults, the recovery value of its assets is given by

n
,8 Zp;ﬂ'j’i + ;.
j=1
This is also the value of the assets ¢ that is distributed to the creditors of i on a pro-rata basis.
Hence, the clearing payment vector is the solution to the following modified system of fixed point
equations

pr =)t if £ < Xy pmia + i
! BYia pjmji+ac;  else,
for i =1,...,n. Under this setting, the uniqueness of a solution to the above system of equations is

no longer guaranteed. An alternative approach for modeling bankruptcy costs has been proposed
by Glasserman and Young (2015), and captures the fact that large shortfalls are more costly than
small shortfalls. Concretely, when an institution i defaults its assets are reduced by the amount

Y [fz - (ZP;Wj,i + Cz):| .
j=1



The above term in square brackets is the shortfall of node ¢ at default. Multiplying this quantity
by the factor ~ gives the bankruptcy costs incurred by node ¢ at default. After accounting for these
deadweight losses, the assets of node i are distributed proportionally to its creditors. Hence, the
clearing payment vector is a solution to the system of fixed point equations given by

p = (AT +o)] -~ [0- (@ TT+0)]), (2)

where for any vector x € R", " = (max{x1,0}, max{xz2,0}, ..., max{x,,0}).

We next discuss the dependence of systemic risk on the network topology. This has been
investigated in the works of Acemoglu et al. (2015a), Battiston et al. (2012), Capponi et al. (2016a),
and Elliott et al. (2014), which are survey next. Capponi et al. (2016a) analyze the conditions under
which concentration of interbanking liabilities is more likely to affect systemic losses. They find
that if the system is highly capitalized (banks with large outstanding liabilities also have high
equity value), a more diversified lending structure is able to reduce systemic risk across multiple
dimensions (largest loss, total loss, etc...). The intuition is as follows. Larger losses are incurred
by banks with smaller equity. When interbank liabilities are more evenly distributed against their
counterparties, larger payments are directed to banks with lower equity, making them less likely
to default. Vice versa, when the system is lowly capitalized (the banks with higher equity value
also have smaller liabilities), a more diversified lending structure is not desired. In this case, larger
losses are incurred by banks with higher outstanding liabilities. When banks distributes their loans
to a larger number of counterparties, a bank with larger liabilities is more likely to receive smaller
payments; thus, it becomes more fragile and can potentially generate larger losses.

Elliott et al. (2014) study the impact of diversification and integration of a financial network.
Integration refers to the level of exposure of institutions to each other through cross-holdings.
Diversification refers to how spread-out the cross-holdings are, i.e whether a typical organization
is held by many others or just a few. They find that at extreme (very low or very high) levels of
integration and diversification, the risk of far-reaching cascades of financial failures is the lowest.
Acemoglu et al. (2015a) analyze the sensitivity of different network topologies to shocks in asset
value. Their findings indicate that if the magnitude of the shock is small, a more concentrated
financial system such a ring network, is more likely to spread contagion failures relative to a more
diversified network, such as the complete network. Under the latter network structure, contagion
risk is shared among a larger number of counterparties and hence the network can better absorb
a negative shock spread. If the magnitude of the shock is too high, however, they show that both
ring and complete networks performs worse than any J-connected financial network (see Definition
5 in Acemoglu et al. (2015a) for the definition of d-connected). The findings of Acemoglu et al.
also provide an analytical support for the “robust-yet-fragile” property of highly interconnected
financial networks observed by Gai and Kapadia (2010) through numerical simulations.

Battiston et al. (2012) show that in presence of a financial accelerator (the impact of a shock to
the economy is amplified by worsening financial market conditions), there exists a threshold of risk
diversification (the degree of connectivity of the credit network) below which higher diversification
lowers the probability of a systemic failure. When the risk diversification is higher than this
threshold, further increases make the financial system more unstable. This indicates that neither
ring nor complete networks are the most stable configurations, but rather the preferred network
structure has an intermediate degree of network connectivity. Amini et al. (2012), consider a large
financial network and derive asymptotic results for the size of contagion, showing that connectivity
is a key determinant of network instability.

We conclude the section with a discussion of empirical studies of interbank networks. Elsinger



et al. (2006) develop an empirical analysis of the Eisenberg-Noe model using data from the Austrian
banking system. They find that correlation in banks’ asset portfolios is the main source of systemic
risk. Their analysis separates fundamental defaults from contagious defaults, the latter being
defaults that would have been avoided if all banks were repaying their obligations in full. Angelini
et al. (1996) provide an early study of systemic risk for the Italian interbank system. Cont et al.
(2013) show how defaults transmit through the payment system and originate systemic crisis using
data from the Brazilian interbank system. Craig and Von Peter (2014) develop an empirical analysis
using bilateral interbank data from German banks covering the period 1999-2007 and find that the
matrix of interbank liabilities exhibits a core-periphery structure. The core banks are large financial
institutions, while periphery banks are small institutions which acts as net lenders. Cocco et al.
(2009) find that small banks tend to act mostly as lenders, while large banks tend to provide
interbank intermedation services (see also Table 5 therein).

2.1.2 Endogenous Financial Networks

The vast majority of models proposed in the literature take the financial network as given. Un-
derstanding the formation mechanisms plays, however, an important role for the analysis of causes
and consequences of systemic failures. This, in turn, contributes to inform the development of
regulatory policies targeting the resilience of the financial system.

Literature on endogenous network formulation is still at its infancy. One of the early works in
this direction is by Farboodi (2014), who designs an endogenous model of financial intermediation,
where profit maximizing institutions decide to strategically borrow and lend. In her network model,
the endogenously emerging borrowing/lending interbank activities resemble a core-periphery net-
work. She shows that banks who make risky investments voluntarily expose themselves to excessive
counterparty risk, while banks who mainly provide funding establish connections with a small num-
ber of counterparties in the network. Acemoglu et al. (2015b) also study the endogenous formation
of financial networks. In their model, banks borrow from and lend to each other in order to finance
risky investments. Each bank realizes gains from trading but is also exposed to the default risk of
its borrower. They show that, in equilibrium, each bank charges its borrowers an interest which is
increasing in their risk-taking behavior.

The findings of Acemoglu et al. (2015b) indicate that in presence of counterparty risk, the
networks that emerge in equilibrium are not compatible with the incentives of a social planner. This
compatibility of incentives is studied by Elliott and Hazell (2016). In their model, banks decide
on their bilateral exposures so to maximize shareholder value. A critical finding of their paper is
that socially efficient networks are typically unstable. Their model predicts that the social planner,
who aims at maximizing the sum of shareholder and debt-holder value, redistributes surplus from
the shareholders of healthy companies to debt holders of distressed organizations. As a result, his
incentives are compatible with debt holders, but not aligned with those of shareholders. This leads
them to trade in a manner which diverts the network away from a socially efficient structure. The
efficiency and stability of a financial network is also studied by Gofman (2014). His model assumes
that each bank has preferential trading partners to whom it is tied by long term relationships, and
he uses it to compute the optimal trading decisions of banks and their efficient allocations. He also
calibrates the model using characteristics of the Fed Funds market.

2.1.3 Mean field models of systemic risk



A recent branch of the literature has put forward models of the mean-field type to capture the
dynamics of systemic stability. Differently from endogenous interbank network models, they assume
that the matrix of interbank borrowing/lending activities is exogenously specified. The dynamics of
banks’ asset values depends on stochastic idiosyncratic events, such as inflow /outflow of consumers’
deposits, common exposure to systematic factors (macro-economic indicators such as GDP growth,
stock index performance, etc...), and on an interaction term which captures the pattern and strength
of interaction with the other banks in the system. Such an interaction occurs through the empirical
distribution of the system’s states, typically corresponding to the banks’ asset values.

We next survey the main contributions in this area. Fouque and Ichiba (2013) develop a banking
model, in which the monetary reserves of the banks are described by a system of diffusion processes
interacting through their drifts. They define the default of a bank as the event that the value
of its reserves reaches zero. They study how individual growth rates and lending preferences of
banks affect default events and network stability. They also provide an interacting particle system
algorithm to compute the probability of a systemic event, defined as the simultaneous occurrence
of many defaults. Fouque and Sun (2013) consider a simplified version of the model, in which the
borrowing rates of banks are proportional to the differences in log-monetary reserves. This results
in a system of Ornstein-Uhlenbeck diffusion processes, each reverting toward the ensemble average
of monetary reserves. Under these assumptions, they characterize the mean field limit of the sys-
tem and compute the probability that the ensemble average reaches the default level. Building on
Fouque and Sun (2013), Bo and Capponi (2015) develop a mean field model of interbanking bor-
rowing and lending activities. In their model, each bank interacts with other counterparties in the
network via exogenously specified lending preferences, and is exposed to risk coming from inflows
or outflows of customer deposits, as well as to sudden shocks affecting the level of its monetary
reserves. These shocks can be interpreted as positive or negative announcements regarding the
overall banking sector, and are modeled through a compound Poisson process. This leads to two
sources of interbanking correlation: (1) mean field interaction as in Fouque and Sun (2013), and (2)
exposure to systematic factors affecting the overall banking sector. They provide an explicit char-
acterization of the limit process associated with the sequence of empirical measures driven by the
interacting system of jump diffusions, and use it to construct law of large number approximations
for systemic indicators, such the average distance to default, and the total volume of interbanking
activities. Garnier et al. (2013) consider a model of interacting agents, who can be either in a
normal or failed state. The agents tend to be near the normal state, but they can be pulled away
from it toward the failed state by external destabilizing forces. They also allow agents to cooperate
in order to achieve stability. Pra et al. (2009) consider a mean-field interaction model to analyze
financial contagion in large networks of firms exposed to credit risk, and characterize the entire
portfolio loss distribution.

The above discussed studies assume that network agents follow prescribed behaviorial rules, and
cannot strategically influence the evolution of the network. Such an assumption has been relaxed
in the work of Carmona et al. (2015), who extend the model proposed in Fouque and Sun (2013)
by allowing the bank to control its borrowing/lending rate from/to a central bank at a quadratic
cost decided by the regulator. This result in a game played by the banks who control the intensity
of borrowing/lending activities and the central bank who decides the cost of these transactions.
They provide an explicit solution for the Nash equilibria of the game when finitely many players
are involved and also consider the mean-field game in the asymptotic case of infinitely many banks.



2.1.4 Bank runs

An important transmission mechanism of distress in financial networks comes from bank runs. Banks
transform short term deposits into long term investments. If bank customers experience a liquidity
shock and wish to withdraw their deposits early, then the bank is forced to liquidate long-term assets
to cover short-term liabilities. Other depositors may in turn withdraw their deposits as they believe
that the bank may become insolvent, hence triggering a funding run. Depositors are likely to recover
less than the promised amount. The banks may be forced to fire-sale their long-term securities, which
may in turn affect macroeconomic conditions, for instance causing a surge in interest rates.

The pioneering model of bank runs has been proposed by Diamond and Dybvig (1983), and is able
to capture features such as loss of investors’ confidence observed during the recent crisis. As investors
began to fear that the underlying assets might be riskier than anticipated, they refused to renew
funding, hence decreasing dramatically the money flow through this market. Freixas et al.(2016)
extend their model and assume that the triggering liquidation shock is not a liquidity shock but
rather driven by movements of deposits across regions, justified by the fact that depositors have
asymmetric payments needs. Gorton (1985) analyzes the impact of incomplete information on
depositors’ runs. He shows that only rational and efficient depositor runs occur under complete
information. If depositors are incompletely informed on the state of bank investments, they may
panic after observing a noisy signal and withdraw their deposits as they expect capital losses.

In recent years, the bank run models have been extended to deal with multiple banks. Chen
(1999) develops a multiperiod model in which consumers select in period 0 the depository institu-
tions, and these banks invest the funds in long term projects with random return. In each period,
deposits learn about liquidity shocks as well as their banks’ long term investment outcome, and
decide whether or not to withdraw their deposits. As a consequence, a subset of these banks may be
run and triggered to failure. This information is then used in a Bayesian fashion to update the
likelihood that investment projects of surviving banks succeed in later periods. Chen (1999) shows
that even if depositors choose the Pareto-dominant equilibrium, there exists a critical number of
early failures above which a run on the remaining banks is always triggered. Iyer and Puria (2012)
identifies factors responsible for contagion effects of bank runs, and analyze micro-level data to
empirically identify factors affecting the propensity of depositors to run.

2.1.5 Fire-Sale Spillovers

Institutions which happen to have holdings of common assets on their balance sheets may experience
financial distress, even if they do not have mutual counterparty exposures. The massive liquidation
procedure carried out by an institution may depress asset prices, and in turn prompt financial
distress at other institutions holding the same assets on their balance sheets. This can create self-
reinforcing or spiral effects, leading to distortion of prices away from their fundamental values. These
liquidations may be driven by the need of maintaining regulatory requirements (e.g. capital-to-asset
or reserve-to-deposit ratio kept above a certain threshold), or of raising sufficient liquidity to fulfil
outstanding obligations. Glasserman and Young (2015) demonstrate that contagion effects coming
from direct counterparty exposures may not be as strong as fire-sales and other related mechanisms
in determining losses.

Adrian et al. (2008) and Greenlaw et al. (2008) provide empirical evidence that financial in-stitutions
actively manage their balance sheets and quickly take actions to respond to changes in



asset prices. Their analysis indicates that commercial banks and broker dealers actively track their
leverage ratios, or exhibit procyclical leverage, expanding their balance sheets during periods of
booms and contracting them during periods of busts. Berger et al. (2008) find that the targeted
leverage is well below the regulatory minimum. Moreover, larger banks tend to set a higher target,
a finding which is consistent with the view that they engage in more risky investments and hence
need larger amount of funding capital. These findings are also confirmed by the empirical analysis
of Gropp and Heider (2010). Memmel and Raupach (2010) analyze a sample of large, publicly
traded banks in sixteen countries, and conclude that banks have stable capital structures fixed at
levels which are specific to the individual bank. In addition, banks’ target leverage/capital ratio is
time invariant and bank specific.

These empirical findings have driven the design of models aimed at capturing the systemic
implications of these actions. Noticeable contributions in this direction include Greenwood et al.
(2015) who study the first order effects of fire-sales, and Capponi and Larsson (2015) who analyze
the pecuniary externalities resulting from the target leverage mechanism. They show that higher
order effects caused by repeated rounds of deleveraging can be substantial during fire-sales. They
introduce the systemicness matrix S; defined by

N A
0
Sf = Zafll—kfnb’ (3)
=1 WA

where afi is the proportion of bank’s i value allocated to asset class k, =y is the elasticity of the
nonbanking demand for asset k, measuring the change in demand per change in the unit price of
the asset. The quantity \; is the leverage (debt to equity ratio) targeted by bank 4, Afi is market
value of asset class ¢ for bank ¢, and Af "0 g the market value of asset class k for the nonbanking
sector. The systemicness matrix is a determinant of systemic linkages and fire-sales externalities
and a key quantity to characterize asset price dynamics. Indeed,

AP,

o (I-S;)" [aggregate shock] = [I+S;+ S?+ 8%+ .. .| [aggregate shock], (4)
t

i.e. an initial aggregate shock is amplified through multiple rounds of leverage targeting activity
conducted by banks. A related study by Duarte and Eisenbach (2015) defines a measure of systemic
risk generated by fire-sale externalities in a similar way to the above systemicness matrix. They
decompose systemic risk into three main components, size, leverage and illiquidity concentration,
and develop an empirical analysis to assess the contribution of each of these components to systemic
risk. Wagner (2011) develops an equilibrium model to analyze the trade-off between diversification
in asset holdings at the individual bank level, and diversity in asset compositions across banks.
They show that the risk of joint liquidations may have important implications for the choices of
banks’ portfolios as well as for asset prices. Chen et al. (2014) analyze the propagation mechanism
of shocks in a network of firms holding common assets under general portfolio choices.

As discussed by Duffie (2010), the risk of fire sales in the recent financial crisis was mitigated by
the intervention of the lender-of-last-resort, and by injection of capital into dealer banks, such as
those of the Bank of England and the U.S. Treasury Department’s “Troubled Asset Relief Program”
(TARP). These funding vehicles are costly to taxpayers and may lead to excessive risk taking by
large dealers who know that they will be bailed out if the market moves unfavorably against them.
Moral hazard problems arising in this context have been thoroughly investigated (see, for instance,
the model of Diamond and Dybvig (1983) and follow-up studies). Banks may find it optimal to
invest in highly correlated assets in anticipation of a bailout triggered by the occurrence of many
simultaneous failures (Acharya and Yorulmazer (2007)).
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2.1.6 Hybrid models

This section analyzes a class of network models in which the value of non-interbank assets is
not kept fixed at its book value. Rather, an exogenous rule for the price impact generated by
the sale of illiquid assets is postulated. When an insolvent bank is unable to fulfill outstanding
obligations using the available cash, it sells its illiquid assets so to raise sufficient liquidity. This
may depress asset prices and trigger default events of institutions which become insolvent as a
result of the reduced price of their illiquid assets. Hence, such an extended model includes two
source of correlation, the first via the network structure and the second via common asset holdings.
For this reason, it can be thought of as a hybrid of the models presented in sections 2.1.1 and 2.1.5.

The main contribution in this direction is by Cifuentes et al. (2005), who extend the Eisenberg-
Noe framework to account for the price impact generated by asset liquidation. In their model, the
non-interbank asset held by institution 4 consist of liquid and illiquid assets, denoted by ¢; and e;
respectively. The liquid asset has a constant unit price, while the illiquid asset has current price
v. The system of fixed point equations which need to be satisfied by a clearing payment vector is
given by

n
p;:min{&, ZP;TFj,z‘+<Z5i+U€z‘}7 i=1,...,n. (5)

j=1
The change in price of the illiquid asset is driven by the fact that each institution is required to
maintain a minimum capital ratio ». When an institution violates this constraint, it would need to

reduce its balance sheet size. This is implemented by selling its liquid assets first, and then illiquid
assets. The number of units of the illiquid asset sold by institution ¢ is determined by

{ (S pymyi+vei) = (
S; = 1INin A €4,

(6)

n * *
1P+ ve; = p; ) /r
; )

In the above expression, the numerator represents the difference between the total asset value held
by ¢ after selling its liquid assets and the total asset value it would need to hold to satisfy the
capital adequacy requirement. The price of the illiquid assets is determined by an inverse demand
function d~!(-) which takes as an input the number of units of the illiquid asset sold, i.e.,

vod! (ils) . M)

An equilibrium is the triple (p,s,v) solving the above three equations (5)-(7). A comprehensive
model of an interbank network, integrating direct counterparty contagion, bankruptcy costs, fire
sales, and balance sheet cross-holdings has been recently proposed by Weber and Awiszus (2016).

2.2 Top-down Models

The top down approach uses systemic risk measures to quantify the level of distress in the economy
and the contributions to it made by each market participant. Rather than modeling the interaction
between the components of the system and providing a microscopic description of the channels of
distress propagation, they aim at measuring the overall distress of the system and then attributing
it to its individual components. These measures are usually designed to capture tail comovements
of firms’ balance sheets as well as the resulting negative spill-overs to the real economy. The risk
is then allocated across the various financial institutions according to certain axioms which reflect
the contribution of each institution to the aggregate risk.
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Key contributions in this direction include the CoVar measure by Adrian and Brunnermeier
(2016), which relates the systemic risk contribution of an individual entity to the value of risk of
the overall system, conditioned on the institution being in a distressed state. The main idea is that
the distribution of asset values of the financial system should depend on the financial health of the
individual institutions as well as on their effects on each other. Hence, if an institution experiences
distress, the distribution of asset values of the system will also change. CoVar estimates the size
of the tail of the distribution of asset values and how it changes. Adrian and Brunnermeier (2016)
employ quantile regression methods to estimate it, and use weekly equity returns data of publicly
traded financial institutions. Acharya et al. (2012) propose the systemic expected shortfall index to
measure the expected amount of undercapitalization of a bank under the occurrence of a systemic
event making the overall financial system undercapitalized. Their proposed risk measure increases
with the leverage and size of the institution. A related systemic index, SRISK, has been introduced
by Brownlees and Engle (2015) to measure, ex-ante, the expected capital shortfall experienced by
a firm under a prolonged period of market distress. As for the systemic expected shortfall, SRISK
depends on the size, leverage and risk of the firm. Firms with the highest SRISK are deemed to
be the largest contributors to the undercapitalization of the financial system in times of distress.
They interpret SRISK as the total amount of capital that the government needs to bail out the
financial system in distressed situations. Brownlees and Engle show that an increase in SRISK
generates negative externalities on the real economy, in that it predicts future declines in industrial
production and increases in the unemployment rate.

Systemic risk in a global economy consisting of a heterogeneous set of market participants has
been studied by Billio et al. (2012). They develop an econometric study in a financial business
consisting of hedge funds, banks, broker-dealers and insurance companies, and find that the link-
ages between these four sectors exhibit dynamic patterns. They find that the interconnectedness
increased dramatically during the financial crisis, hence increasing the channels for shocks propa-
gation. Most recently, networks of systemic dependencies have been constructed using the variance
of stock returns of contributing institutions. Diebold and Yilmaz (2014) decompose the variance
of stock returns of each financial institution into different portions, each contributed by any other
institution in the network. They use this decomposition to construct the bank stock return volatil-
ity network of major US financial institutions, and analyze its evolution during the financial crisis.
Demirer et al. (2015) apply the same technique to construct the stock return volatility network
of financial institutions in G7 sovereigns as well as those of Spain, Greece and Australia. They
find that connectedness is highly dependent on location, and it exhibits a sharp increase during
the crisis. The significant power prediction power of the equity volatility of financial institutions
has been empirically studied by Giglio et al. (2016). They perform an empirical analysis of twenty
systemic risk measures and show that, except for equity volatility, most of them fail to capture the
large negative downturns observed during the financial crisis.

Other studies have proposed measures of systemic risk at a more theoretical level. Brunnermeier
and Cheridito (2014) measure the total systemic risk by determining the total costs born by the
society, in terms of bailout assistance or government loan, and then allocate it to the institutions
based on their marginal contributions. Their proposed SystRisk measure grows superlinearly with
the exposures of financial institutions. Their measure may be interpreted in terms of preferences
of a risk-averse investor, as it gives higher weight to losses occurring in states of the world in which
the overall economy is depressed.

Biagini et al. (2015) study systemic risk measures using multi-dimensional sets of acceptance
describing desirable states of the system. Feinstein et al. (2015) develop a a related analysis, and

12



define systemic risk as the set of allocations of additional capital that lead to acceptable financial
outcomes. Armenti et al. (2015) define the concept of multivariate shortfall risk, and then discuss
how this is allocated to each individual risk factor. An axiomatic foundation which includes many
statistical risk measures proposed in the literature as special cases is provided by Chen et al. (2013).

3 Policies

Concerns about the onset and propagation of systemic risk have prompted regulatory authorities
to design preventive and resolution policies. Policies of the preventive type include structural
policies targeting the balance sheet management of financial institutions, as well the trading network
infrastructure. Policies of the resolution type include plans for orderly liquidation in the event of
failure, or contingency plans for preserving functioning of critical operations in times of stress. We
discuss preventive policies in Section 3.1 and resolution policies in Section 3.2.

3.1 Preventive Policies

We describe capital structure policies in Section 3.1.1, monetary policies in Section 3.1.2 and
network infrastructure policies in Section 3.1.3.

3.1.1 Macroprudential Policies

The objective of macroprudential policies is to enhance the resilience of financial institutions so
to prevent and mitigate the negative externalities generated when financial institutions enter into
distress. This is achieved by disciplining them via the imposition of ex-ante measures targeting
balance sheet growth. The U.S. regulatory capital rules require institutions to satisfy minimum
leverage ratio requirements, where the leverage is defined as the ratio between core capital (common
stocks and retained earnings), and the total value of consolidated assets. These measures of leverage
ratios do not distinguish across exposure types hence applying the same capital requirement to
all assets. Although it can be argued that the imposition of capital requirements may have the
unintended consequence of reducing lending and the overall economic activity, it is shown in Admati
et al. (2011) that this is likely to result in reduced social costs. Banks are instead forced to make
better lending decisions, and more specifically they have smaller incentives to engage in excessively
risky activities. Moreover, Admati et al. argue that the response of highly levered banks to
increased capital requirements is not to restrict loans, especially if they are adequately capitalized.
Additional equity gives them the ability to provide money-like securities. which are considered less
risky by investors.

An important policy proposed in response to the great depression was the conservation and
countercyclical capital buffer policy. This was designed to ensure that banks build up capital
buffers during periods of booms and use them in periods of distress when losses are likely to be
generated. The countercyclical nature guarantees that, in downturns, the risk that the supply of
credit is constrained by regulatory capital requirements is reduced. This in turn contributes to
improve the performance of the real economy and to avoid additional credit losses in the banking
system.

During the financial crisis, the imposition of regulatory capital requirements amplified the credit
cycle. In the good times when risks were deemed to be low, capital requirements were also low, stim-

13



ulating the easing of lending conditions and favouring credit expansion. In the distressed periods,
however, the riskiness of bank assets rose, forcing the build up of capital at a time when increas-
ing capital levels was costly. In these cases, capital regulation contributed to increase pressure on
banks’ balance sheets, which resulted in negative externalities.

Domestic authorities are required to monitor credit growth and decide whether such growth
is excessive and likely to trigger the build-up of systemic risk. The measure for credit growth is
chosen to be the credit-to-GDP ratio, which is expected to oscillate around a stable equilibrium
value, and to deviate from it only in situations of instability. The capital conservation buffer, set
at 2.5%, ensures that banks accumulate capital buffers above the minimum requirements outside
periods of distress. The countercyclical capital buffer is then triggered in periods of high credit
growth as a precaution against losses arising during periods of downturns.

Despite being adequately capitalized, in the great recession banks experienced difficulties be-
cause they did not prudently manage their liquidity. Prior to the crisis, funding was cheap and
readily available. The deterioration of market conditions made it evident how quickly liquidity
can evaporate, and be replaced by a longstanding regime of illiquidity. To ensure a more resilient
banking sector during these distressed situations, the liquidity coverage ratio (LCR) policy was
put forward as one of the key reforms by the Basel Committee. The objective is to promote the
short-term resilience of the liquidity risk profile of banks. This is achieved by ensuring that banks
have an adequate stock of high quality liquid assets that can be readily converted into cash to meet
their liquidity needs over a thirty day liquidity stress scenario. Under these conditions, the banking
sector has a higher ability to absorb shocks during distressed situations, and this contributes to
reduce the risk of spillovers from the financial sector to the real economy.

Other prudential policies are the establishment of minimum margin requirements for securities
financing transactions. These are effectively collateralized loans, including repurchase agreements
activities in which investors temporarily post an asset as collateral in exchange of cash (repo-
financing), or viceversa (security lending activity as in the case of short-selling). An important
consequence of this policy is to prevent excess leverage in the financial system and reduce demand
of the financed assets.

There is, at present, scarce literature on macro-prudential policies. Angeloni and Faia (2013)
construct a macroeconomic model for risky banks and analyze the effect of bank capital regulation.
Their analysis suggests that the introduction of anti-cyclical capital requirements can be beneficial
for financial stability. Crowe et al. (2013) and Lim et al. (2011) discuss policies imposing a cap
on the loan-to-value ratio in anticipation of future real estate booms and busts. These caps are
expected to dampen the build-up of systemic risk in the residential mortgage market, and indirectly
in the banking system.

3.1.2 Monetary Policies

This section discusses monetary policies put forward by the Federal Reserve to mitigate the threats
to financial stability arising from the realization of adverse outcomes. Differently from macropru-
dential policies, these are not too concerned with the solvency of financial institutions, but rather
focus on pursuing price stability over some target horizon.

These policies prescribe reserve requirements, i.e funds that commercial banks must hold in
deposits at the Federal Reserve against certain types of liabilities. The Federal Reserve decides
the minimum ratio of liabilities for which reserves are required, and the interest rates that these
depository institutions receive for the required reserves.
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The Federal Reserve also provides liquidity assistance to commercial banks in times of need,
hence contributing to stop or dampen fall in asset prices caused by fire sales. This is implemented
through the discount window lending. This provision of funds also offsets the arrest in banks’
funding which is likely to occur during these periods.

The Federal Reserve can also provide forward guidance by signaling variations in the federal
funds rate, i.e. the rate at which commercial banks are allowed to borrow. For instance, by signaling
a future increase in this rate, it would condition monetary tightening in the economy. This would
reduce excess leverage taken by financial institutions by reducing credit demand due to the higher
rate charged on borrowing transactions.

Although monetary policies contribute to financial stability, they may have conflicting objectives
with other policies. For instance, Adrian et al. (2010) show that most of the monetary tightening
cycles are followed by recessions or by increases in the unemployment rate. They also link reduced
economic activity to the 10Y-3M Treasury spread. They show that when this spread is low, the
activity of the banks which provide long-term loan to investors and fund them via short term debt
becomes less profitable and hence may lead to a reduction of credit supply in the economy.

Moreover, differently from macro-prudential policies, monetary policies cannot target specific
asset classes but rather the macro-economy as a whole. In this respect, they apply both to the
banking and non-banking sector in contrast to macro-prudential policies which typically apply to
banking institutions. Moreover, monetary policies are faster to implement once they are designed
as opposed to macroprudential policies which typically have implementation lags.

Important contributions to the literature on monetary policies include include Farhi et al. (2009)
who provide a mechanism of how liquidity requirements impact interest rates on private markets
and characterize the optimal liquidity adequacy requirement under a general specification of shocks.
Adrian et al. (2014) show that looser requirements on monetary policies lead institution to take
excessive leverage, and influence risk premia. We also refer to Adrian and Liang (2014) for more
institutional details and a thorough literature review of monetary policies.

3.1.3 Network Infrastructure Policies

Structural policies on trading networks aim at reducing the catastrophic consequences coming from
excess exposure to systemically important institutions, or to mitigate losses due to counteparty
contagion in derivatives trading.

Policy proposals by the Basel Committee aim at limiting the size of gross exposures to individual
counterparties. The proposed framework, also referred to as LE (large exposures) framework, is
expected to be fully implemented by January 1, 2019. It is designed to protect banks from contagion
losses generated by the sudden default of a group of connected counterparties. The set of acceptable
exposures is computed in such a way that the maximum possible loss incurred by a bank as a result
of contagion effects would not induce its own default. These large exposure limits directly contribute
to reduce the system-wide contagion risk. A recent study by Capponi et al. (2016a) constructs an
analytical framework in which concentration of interbank exposures is quantified by applying the
majorization order to the network matrix of liabilites. The conclusion of the study support the
imposition of policies targeting exposures concentration limits to individual institutions in highly
capitalized banking systems.

The most significant policy regulating financial trading in over-the counter markets is the move
to a centralized trading structure. This policy requires that standardized contracts are traded via a
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central entity, the clearinghouse, which is responsible for setting collateral requirements to trading
parties so to reduce contagion effects arising from counterparty failures. Such a policy has been
mandated by the European Market Infrastructure Regulation (EMIR) and the Dodd-Frank Wall
Street Reform and Consumer Protection Act in the United States.

Central clearing changes the distribution of risk in derivatives trades. In a traditional over-
the-counter transaction, each counterparty is exposed to the default risk of the other, i.e. to
the possibility that it stops fulfilling its obligations at some time during the life of the contract
(for instance, it no longer pays the spread premium in a credit default swap transaction, or the
Libor floating rates in an interest rates swap transaction). When trades are cleared, the original
counterparties novate the trade to the central clearinghouse, i.e. the CCP becomes the buyer to
the original seller and the seller to the original buyer. If the buyer or seller defaults, the CCP is
responsible for reimbursing the surviving parties of the losses generated by the defaulting parties.
In order to satisfy its obligations, the CCP has access to a default waterfall management structure,
namely a variety of financial resources including collateral posted by those who clear contracts with
it and financial commitments made by its members and owners.

We next survey the main contributions to the literature on central clearing, and refer to Pirrong
(2011) for a good overview. Duffie and Zhu (2011) provide a theoretical analysis of the impact on
aggregate collateral generated by the introduction of a centrally cleared network structure. They
show that the netting efficiency is maximized if there is a single CCP which jointly clears various
classes of derivatives, while there can be a loss of netting efficiency with a resulting increase in
counterparty risk if clearing is fragmented, i.e. each clearinghouse only clears a specific class of
derivatives. Cont et al. (2013) perform a similar analysis, but focus more on the role of heterogeneity
in exposures, and show that under these circumstances the gain from multilateral netting in a CCP
is the dominant force; for instance, adding a CCP clearing credit default swaps when there already
exists a CCP for interest rate derivatives is likely to decrease the overall exposure.

Besides the counterparty risk, other type of risks have been investigated by recent literature.
These risks are related to the quality of posted collateral, concentration in traded positions and
asset values, and distribution of collateral resources among members. Mancini et al. (2016) provide
an empirical analysis of the centrally cleared Euro market and find that high quality collateral
behaves as a shock absorber, stabilizing the market. Glasserman et al. (2015) analyze hidden
illiquidity effects in the case of multiple central counterparties and identify potential “race to the
bottom” phenomena in collateral levels. Menkveld (2015) analyzes the social cost of crowded trades
in a centralized clearing setting. Capponi et al. (2015) show that, while hedging risk through a
central clearinghouse is desirable at an individual level, it may lead to excessive concentration in
asset value of member banks.

3.2 Resolution Policies

This section is centered around resolution policies, both for the network of bilateral contractual
exposures, and for the centralized network of derivatives trading.

The Dodd-Frank Wall Street Reform and Consumer Protection Act (DFA) provides liquidation
authority to the Federal Deposit Insurance Corporation (FDIC). The FDIC can utilize several
methods to resolve a failing bank, including open bank assistance, conservatorship, purchase and
assumption, insured deposit transfer, and a deposit payoff (see also Ragalevsky and Ricardi (2009)
for details). In practice, the FDIC used Purchase and Assumption (P&A) transactions to resolve
most of the bank failures since it became effective on December 19, 1991. (P&A) transactions
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auction the assets and deposits of a failed institution to a group of eligible bidders. The FDIC
incurs a loss on assets given by the difference between the book value of a failed bank’s assets
and the market value at which they are sold. The Resolution Trust Company (RTC), a special
and temporary government entity tasked with resolving insolvent thrifts during the savings and
loans crisis, proposed the branch breakup to improve upon P&A transactions. This approach
conducts auctions on a bank’s branches individually to increase auction competition by allowing
more participants. Capponi et al. (2016b) provide a study on the efficiency of the branch-breakup
resolution strategy and its mitigation effect, as the fraction of assets resolved through auctions and
auction competitiveness increase. Capponi and Chen (2015) develop a multi-period version of the
Eisenberg-Noe model, and analyze the systemic risk mitigating effects of various policies of liquidity
assistance.

Resolution policies of failing central counterparties are currently subject of high debate. As
also argued by Duffie (2015), the failure of a major CCP may have catastrophic consequences if
the resolution procedures are not well designed. The failure of a systemically important clearing
member can have strong contagion effects as it can cause the central clearing counterparty to fail to
meet its obligations to other systemically important clearing members. Fire sales of collateral levels
may be observed as a result of this failure, which contribute to increase market volatility. This can
result in the discontinuity of the clearing service and the necessity of other members to migrate their
positions to a different clearinghouse, or of the clearinghouse to return any remaining assets to its
clearing members. There have been, so far, two proposed strategies for central clearing resolution.
The first, called “variation margin gains haircutting”, postulates that the CCP accumulates cash
by reducing the variation margin payments that it would have made to the clearing members, while
still collecting in full the margin payments owed by the clearing members. The second, referred
to as a “tear-up”, claims that the CCP cancels its outstanding notional derivatives positions with
some clearing members.

3.3 Systemically Important Financial Institution (SIFI) Policies

This section discusses strategies to designate institutions as systemically important. These have
been proposed by researchers in response to the contest launched by the MIT Center for Finance
and Policy and the Harvard Crowd Innovation Laboratory. We also refer to MIT Center for Finance
and Policy (2016) for a detailed description of the contest, and provide here a brief summary of
distinguishing characteristics of systemic importance proposed by respondents.

An effective measure of systemic importance is a score which accounts both for the credit qual-
ity of the financial institution and its interconnectedness. Other important criteria are leverage,
balance sheet fragility, and market significance. Moreover, systemically important institutions can
be characterized by high values of the following measures: 1) cash obligations during resolution
(COR); and 2) operational cash throughput (OCT). COR measures the amount of capital a hy-
pothetical resolution authority needs to quarantine the institution’s failure from creating losses to
other parties by paying the institution’s obligations during resolution. OCT measures the amount
of financing that is lost due to the unavailability of the institution’s functions during the resolu-
tion period. Regulators would need to carefully specify relevant stressed scenarios and parameters
which can be used to simulate COR and OCT distributions. A systemically important financial
institution should also have high vulnerability to failures or disruptions in the financial system, and
be strongly connected to other entities in the financial system.
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4 Data Repository and Supervisory Authorities

The analysis of systemic risk is severely undermined by the the fragmentation of the available
data, and often by the unavailability of specific datasets. To the best of the author’s knowledge,
there is presently no comprehensive document indicating which data are held by which supervisory
institutions. In this section, we provide an overview of the main financial regulators in the United
States, as well as of the institutions that are regulated by them. Despite this does not provide
a complete map between data sources and supervisory institution, it indicates which regulatory
authorities are most likely to collect a specific dataset. We also refer to Murphy (2015) for an
in-depth discussion

e Federal Reserve (FED). It regulates bank holding, securities holding, loan holding compa-
nies, and any firm designated as systemically important by the Financial Stability Oversight
Council. The FED also acts as a lender of last resort to member banks through the discount
window and can inject liquidity to the financial system in usual circumstances. It can also
shut down firms that are deemed to pose serious threats to financial stability.

e Office of Comptroller of Currency. It regulates national banks and federally charted thrift
institutions, i.e. targeting consumers rather than businesses. It publishes quarterly reports
on bank trading and derivatives activities, based on information provided by all insured U.S.
commercial banks, savings associations and trust companies.

e Federal Deposit Insurance Corporation (FDIC). It is responsible for the oversight of federally
insured depository institutions, including commercial banks and thrift banks that are not
members of the Federal Reserve System. The FDIC has the authority to use the deposit
insurance funds to assist depository institutions, including the provision of debt guarantees.

e Securities and Exchange Commission (SEC). It oversees security exchanges, brokers, dealers,
clearing agencies, mutual funds and hedge funds with high asset value. It also regulates
security based swap (SBS) dealers and SBS execution facilities. SEC is also empowered with
the right to suspend trading strategies which are consider to pose systemic threats.

e Commodity Futures Trading Commission (CFTC). It regulates futures exchanges, commodity
trading advisors, swap dealers and execution facilities, and clearinghouses. They may decide
to order liquidation of trading positions during emergency situations. CFTC publishes weekly
interest rates swap reports. The swaps market data included in this publication is produced by
entities, such as the Bank for International Settlements, International Swaps and Derivatives
Association, and the Office of the Comptroller of the Currency.

e Federal Housing Finance Agency (FHFA). It supervises federal housing agencies such as
Fannie Mae, and Freddie Mac, as well as the Federal Home Loan Banks.

e Bureau of Consumer and Financial Protection. It regulates nonbank mortgage-related firms,
private student lenders, and consumer businesses of banks whose asset size exceeds $10 billion
in assets.

Several efforts promoting data sharing, retrieval, and distribution have been initiated. These
include the G20 Data Gaps Initiative, which recommends the collection of consistent bank level data
for enhancing existing sets of aggregate statistics, and the Office of Financial Research, established
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as a department within the Treasury and tasked with the the collection and analysis of financial
data. The Office of Financial Research collects counterparty networks data which can be used for
monitoring and analysis of systemic risk. These include over-the-counter credit default swaps data,
bilateral money-fund exposures, loan syndication networks, bilateral and tri-party repo, historical
bank clearing networks and BIS data on cross-border interbank claims.

Another important data provider is the Depository Trust & Clearing Corporation, one of the
world’s largest securities depositories and providing electronic recordkeeping of security balances
as well as clearing services. DTCC provides global trade repository services for OTC derivatives
in multiple asset classes, starting with credit derivatives in 2006. DTCC’s Trade Information
Warehouse holds 98% of all credit derivative transactions, while the DTCC Derivatives Repository
operates the trade reporting repository for OTC equity derivatives transactions. Empirical esti-
mates of systemic risk measures can also been freely assessed. For instance, CoVar measures of
dealers operating in the financial markets can be produced using the code made available at the
authors’ websites. Similarly, the VLab directed by Robert Engle provides free access to end-of-day
SRISK measures.

There are, unfortunately, data sources which are either not collected or not released for research
purposes, as well as methodologies designed for systemic risk management, whose details are not
fully revealed. For instance, data on the full network of pairwise liability exposures between financial
institutions is not available. The absence of such a dataset prohibits a full-fledged assessment of
contagion effects arising from counterparty contagion in the network. To compensate for the absence
of this dataset, researchers have developed statistical methods for estimating the interbank liability
matrix using balance sheet data. Contributions in this direction include Upper and Worms (2004)
who estimate the German interbank network by minimizing the relative entropy with respect to
a matrix in which the interbank exposures are assumed independent, and Anand et al. (2014)
who propose the minimum density method to minimize the total number of interbanking links,
consistently with the observed total volume of interbank assets and liabilities. Gandy and Veraart
(2015) develop a Bayesian framework, based on Markov-chain Monte-Carlo methods, to estimate
the distribution of bilateral exposures conditional on observed balance sheet data.

Systemic risk analysis of centrally cleared networks requires information about positions held
by clearing members as well as levels of collateral posted. The rule used by major clearinghouses
to determine initial margin requirements is not made publicly available. Rather, the only acces-
sible information includes end-of-day posted margins data. Higher transparency regarding the
determination of collateral requirements would make it possible to perform studies regarding the
implication of central clearing on collateral demand, compare existing with alternative margining
rules, and inform the development of safe and financially stable clearinghouse.

5 Concluding Remarks

This tutorial has described the main modeling approaches and techniques for systemic risk analysis.
This constitutes a topic of active research interest, which is contributing to shape the future of the
banking industry and to inform the design of regulations. We have discussed policies targeting
prevention and mitigation of systemic risk, as well as of default resolution. Being systemic risk
tightly linked to financial stability and regulations, we have described which are the main regulatory
bodies and what their supervisory responsibilities are. Going forward, we believe that research
efforts should continue to be directed toward the understanding of mechanisms leading to the
formation, preservation, and propagation of systemic risk. The research field would greatly benefit
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by more empirical studies targeting systemic risk measurements as well as the effectiveness of
policies. The findings of this research are expected to play a major role in the validation/refinement
of existing models, and the development of novel frameworks capturing the salient features of
financial distress and instability. Clearly, the outcome of these efforts is tied to the quality and
completeness of the available data set, information sharing, and also requires a close interaction of
academia and regulatory authorities worldwide.
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