Blockchain 2.0

PRESENTATION BY:
Campbell R. Harvey
Duke University, NBER and Investment Strategy Advisor, Man Group, plc
The Blockchain Identity

Campbell R. Harvey
Duke University, NBER and
Investment Strategy Advisor, Man Group, plc
Blockchain is a technology

There is no “the” blockchain ...
blockchain is a technology.

- Concept invented by Haber and Stornetta (1991) in the context of time-stamping digital documents.
- Also, blockchain is not bitcoin. Bitcoin uses a blockchain technology.
Blockchain is a ledger

A very special ledger...

• Quickly and easily accessed and shared by many -- distributed
Blockchain is a ledger

A very special ledger...

- Quickly and easily accessed and shared by many -- distributed
Blockchain is a ledger

A very special ledger...

• Quickly and easily accessed and shared by many -- distributed
Blockchain is a ledger

A very special ledger...

- Quickly and easily accessed and shared by many -- distributed
- Various levels of transparency depending on application
- Immutable (you can only add to it -- you cannot alter history)
Blockchain is a ledger

A very special ledger...

- Quickly and easily accessed and shared by many -- distributed
- Various levels of transparency depending on application
- Immutable (you can only add to it – you cannot alter history)
- Cryptographically secured
Blockchain is a ledger

A very special ledger...

- Quickly and easily accessed and shared by many -- distributed
- Various levels of transparency depending on application
- Immutable (you can only add to it – you cannot alter history)
- Cryptographically secured
What can blockchain technology do?

Solves many problems

• Verification of ownership (quickly check the immutable history recorded on a blockchain to see if someone owns something)

• Efficient exchange of ownership (direct transactions without middle person, everybody treated the same whether customer, retailer or banker).
Imagine ...

Buying and selling stock with t0 settlement

- Today is t+3 not much different than the 1920s
- All stock transactions would reside in a secure ledger devoted to a company’s equity
Imagine ...

Closing on a property with

- No title insurance
- Minimal legal
- No title search
- Simply consult a secure ledger that establishes the person you are buying the house from actually owns it
Imagine ...

Instantly transferring funds between accounts

• Transfers are not immediate today – even within your own bank!
• Transfers are secure and inexpensive

FINANCIAL TIMES
May 24, 2016 7:13 pm
The growing threat from online bank robbers
A series of heists forces the Swift cross border network to tighten up
Imagine ...

The end of counterfeiting

• Massive number of counterfeit bills in circulation
Imagine ...

The end of counterfeiting

• Massive number of counterfeit bills in circulation
Imagine ...

Starting your car with your thumb print or your face

- A secure ledger is checked to verify that you own the car
Prime targets of disruption

Any situation with a thick layer of middle people

• Blockchain is fundamentally a P2P technology.
Types of blockchains

Public blockchains

• Trustless. Original example bitcoin blockchain. Open source code.
• Ethereum blockchain allows for contracting and is the main choice for most corporate applications. Contracts can be conditional, if then statements. Bitcoin blockchain cannot do this.
• Variety of mechanisms to ensure security (Proof of Work, Proof of Stake, Proof of Authority, Zero Knowledge Proof, etc.)
Types of blockchains

Private blockchains

• Trust required.

• Need to determine if the cost of trustlessness is worth it. Most applications today involve trust. Combining blockchain technology with trust allows for much more efficient transactions (think of payments)
In the news....

We should, at minimum, understand the cover stories in magazines!

September 1, 2017

October 31, 2015
But ...

Carl Sagan

- “We live in a society exquisitely dependent on science and technology, in which hardly anyone knows anything about science and technology.”
 --September 10, 1989
Original blockchain

Let’s start with the bitcoin blockchain:

• A distributed, secure, transparent, public ledger that establishes ownership and allows for the efficient exchange of ownership
• Available to anyone for download on the Internet (decentralized)
• Does not depend on trust (controlled by no one – monitored by everyone)
• Backed by strong cryptography secured by the world’s most powerful network of computers
• Miners provide security and are rewarded with new cryptocurrency
Original blockchain

How powerful?

- Currently 80,704,290 petaFLOPS
- #1 supercomputer is Sunway TaihuLight at 93 PetaFLOPS
- Sum of top 500 is only 593 petaFLOPS
- Blockchain uses specialized hardware and floating point operations are not needed. Cost of 50% of the network power is about $1 billion

mFLOP = 1 million operations per second

Campbell R. Harvey 2017

A simple hash

Suppose I send an email to Marie. However, she needs to verify that what I sent her is exactly what he received.

• Email contains a single word “hello”.

• Encode the word (a=1, b=2, ..., z=26), so 8 5 12 12 15.

• Multiply the numbers to get 86,400.

• I post the hash on my website. After Marie gets my email, she does the same hash and checks my website.

• If the message was corrupted the hash will not match, for example, “hallo” = 8x1x12x12x15=17,280 which does not match the original.

• This hash is too simple (e.g. hello=ohell) and causes a “collision”
Hashing 101

SHA-256 (Secure Hashing Algorithm)

http://www.xorbin.com/tools/sha256-hash-calculator

Hashing is a one-way function.

Hashing is not “encryption” because you can’t decrypt.

For example, passwords are routinely stored on websites in hashed form.

The output of a SHA-256 is 256 bits no matter how big the input.

Let’s do some examples:
Hashing 101

SHA-256 (Secure Hashing Algorithm)

http://www.xorbin.com/tools/sha256-hash-calculator

Let’s hash the phrase: “Hello, world!” with a special number appended. No spaces. Do it three times for three different strings.

Hello, world!0
Hello, world!1
Hello, world!4250
Hashing 101

How many combinations in a SHA-256 hash?

• Need $2^{255} = 1.15 \times 10^{77}$ guesses

• Which is roughly the number of atoms* in the known universe!

Hashing 101

SHA-256 hashes widely used for email and file transfer

- Returning to the email example, I want to send a file to Marie
- I SHA-256 the file
- I send Marie the original file
- Marie does her own SHA-256 hash of the file
- Marie checks to see if her hash of the file matches the hash that I have on my website
- If there is any difference, the file has been corrupted
- This all happens automatically and is called “checksum”
Hashing 101

SHA-256 appears in Wall Street Journal

On Sunday, one day after Ms. Anderson’s visit, WikiLeaks issued a series of three messages over Twitter. Each one began “pre-commitment” and then the number 1, 2, or 3, followed by a short phrase, and then an assortment of 64 letters and numbers.

pre-commitment 1: John Kerry
4bb96075acad3d80b5ac872874c3037a386f4f595fe99e687439
aab0219809

6:08 PM - 16 Oct 2016
How does the bitcoin blockchain work?

Every transaction ever made on this blockchain is public

• Ledger is append-only and immutable
• Serves as a basis of trust
• Can store (limited) metadata as well as transactions
How does the bitcoin blockchain work?

Ledger broken up into 10 minute “blocks”

- Every block contains a hashed reference to the block before it so you can trace every transaction all the way back to 2009
How does the bitcoin blockchain work?

Example. In block 1000, I buy a car (for 17 BTC) from John.
How does the bitcoin blockchain work?

Suppose I edit the block on my computer – to give me 17 BTC!

I then broadcast to the network
How does the bitcoin blockchain work?

Even making that small change results in a very different block hash. It no longer matches what is stored in block 1001.
How does the bitcoin blockchain work?

Blockchain clients automatically compute the hash themselves - if no match, they reject the block - Check other peers in the network for correct block
How does the bitcoin blockchain work?

But there is more to it! Here is where the miners come in.

- Miners group the current transactions together and take a hash of the transactions plus a “magic number” – called a “nonce”.

![Diagram showing the process of mixing transactions and adding a nonce to create a hash]
How does the bitcoin blockchain work?

But there is more to it! Here is where the miners come in.

• Miners try different nonces to get a special hash that has a certain number of leading zeros
• More leading zeroes means fewer solutions – and more time to solve the problem
• Think of shuffling 5 decks of cards. You goal is to turn over 5 aces of spades in the first five cards! That will be a lot of shuffling.
How does the bitcoin blockchain work?

But there is more to it! Here is where the miners come in.

• Current difficulty is 18 leading zeros! Probability = \((1/16)^{18}\)
• Odds of winning two Powerball jackpots* in a row approx \((1/16)^{15}\)
• Someone finds the winning hash approximately every 10 minutes
• This means 3.4 billion gigahashs calculated every second**
• System is immune to increases in computing speed – the difficulty automatically adjusts if the hash is found in less than 10 minutes

*One Powerball = 3.4223E-09; two Powerballs in a row = 1.17122E-17; 18 zeroes in winning hash 2.117E-22

** https://blockchain.info/charts/hash-rate Note 1 gigahash=1 billion hashes
How does the bitcoin blockchain work?

But there is more to it! Here is where the miners come in.

• It is easy to verify the hash is correct
• Anyone can take the hash of the transactions + nonce and get the hash with the 18 leading zeros
• However, any change in any transaction – no matter how trivial – will lead to a completely different hash (and unlikely to have any leading zeros)
• Miners are rewarded with cryptocurrency for finding the winning hash and verifying transactions. There are also small transaction fees.
Distributed public ledger

Bitcoin blockchain:

• Anyone can write to ledger and anyone can mine, i.e., no “censorship”
• Network determines “settlement”
• Having extreme “difficulty” is expensive (power consumption) but reduces or eliminates the possibility of any single person (or miners) from doing anything nefarious.
Private blockchains

Example: 3 banks, 2 customers

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>5,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank B</td>
<td>-1,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank C</td>
<td>1,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer A</td>
<td>500.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer B</td>
<td>500.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>10,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank B</td>
<td>500.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank C</td>
<td>10,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer A</td>
<td>500.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer B</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Campbell R. Harvey 2017

Private blockchains

Example: 3 banks, 2 customers + 1 blockchain

<table>
<thead>
<tr>
<th>Bank A</th>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank B</td>
<td>-</td>
<td>1,000,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank C</td>
<td>-</td>
<td>5,000,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer A</td>
<td>-</td>
<td>1,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer B</td>
<td>-</td>
<td>5,000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank B</th>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>-</td>
<td>1,000,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank C</td>
<td>-</td>
<td>50,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Customer A</td>
<td>-</td>
<td>500.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank C</th>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>-</td>
<td>5,000,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank B</td>
<td>-</td>
<td>50,000.00</td>
</tr>
<tr>
<td>USD</td>
<td>Customer A</td>
<td>-</td>
<td>10,000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer A</th>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>-</td>
<td>1,000.00</td>
</tr>
<tr>
<td>GBP</td>
<td>Bank B</td>
<td>-</td>
<td>500.00</td>
</tr>
<tr>
<td>USD</td>
<td>Bank C</td>
<td>-</td>
<td>10,000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer B</th>
<th>Asset Type</th>
<th>Counterparty</th>
<th>Amount owed (owing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBP</td>
<td>Bank A</td>
<td>-</td>
<td>5,000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issuer</th>
<th>Holder</th>
<th>Asset</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank A</td>
<td>Bank C</td>
<td>GBP</td>
<td>5,000,000.00</td>
</tr>
<tr>
<td>Bank A</td>
<td>Customer A</td>
<td>GBP</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Bank B</td>
<td>Bank A</td>
<td>GBP</td>
<td>1,000,000.00</td>
</tr>
<tr>
<td>Bank C</td>
<td>Bank B</td>
<td>GBP</td>
<td>50,000.00</td>
</tr>
<tr>
<td>Bank C</td>
<td>Customer A</td>
<td>USD</td>
<td>10,000.00</td>
</tr>
<tr>
<td>Customer A</td>
<td>Bank B</td>
<td>GBP</td>
<td>500.00</td>
</tr>
<tr>
<td>Customer B</td>
<td>Bank A</td>
<td>GBP</td>
<td>5,000.00</td>
</tr>
</tbody>
</table>

Private blockchains: Example

JP Morgan’s Quorum

- Ethereum based private chain
- Blockchain includes encrypted versions of all contracts
- For a specific contract, only the parties to the contract have the ability to decrypt the contract
- So their blockchain includes all history, is immutable, but you can only see the transactions you are a party to
- Disrupts back office functions – large cost savings
Machine to Machine Payments

Three stages of the Internet

• Initially, a way to gather information (via search or just visiting a website).
• Next, social media where new communities were enabled by the Internet.
• Over the next few years, the third wave will be machine to machine payments enabled by the Internet.
Machine to Machine Payments

Current payments on the Internet

• Today, it is possible to pay for things on the Internet. However, the technology is clunky. APIs allow you to enter credit card or bank information.

• Current payments are only feasible if they are of sufficient size.
• Merchants face a 3% credit card fee.
• You need to have a credit card or bank account to play in this space.
Machine to Machine Payments

With today’s technology, there are severe constraints

- Consumers pay for things but they cannot be paid (exception Amazon Turk).
- It is infeasible to think about forcing customers to pay, say 5 cents to visit your webpage and it is equally infeasible to think about paying someone to visit your website or advertisement.
Machine to Machine Payments

It is generally not known that machine to machine payments are possible in HTTP – they just aren’t used.

• Look up HTTP 402 code (you all know the frequent 404 error – website not found).

402 Payment Required
Reserved for future use. The original intention was that this code might be used as part of some form of digital cash or micropayment scheme, but that has not happened, and this code is not usually used.

Machine to Machine Payments

Tasks and demographic information

• Using HTTP combined with a cryptocurrency wallet, the payments are instant. Further, you do not need a traditional bank account.

• Think of getting into an Uber and completing a few surveys during your ride. For each survey, you get $2.50. Enough to pay for the Uber.

• Some of these tasks are explicitly learning about your preferences. That is, you are offering up your demographic profile.
Machine to Machine Payments

A new way to think about email

• At the top of your inbox are emails from your work, friends and family.
• However, companies pay you to accept email from them.
• The highest paying company will have the highest placement in your inbox.
• If you open the email, you are also paid. If you click on a link in the email, you may be paid more.
Machine to Machine Payments

Email is no longer free

• Everybody pays to send an email.
• If I am sending to a friend, the fee is very low, say $1/10^{th}$ of a cent.
• Companies will pay far more if my demographic profile is attractive to the company.
• As a side benefit, spam is eliminated. Over half of all Internet email traffic is spam today.
• In terms of the economics, it is never efficient to price something at zero.
Machine to Machine Payments

The web is no longer free

• In this world, almost every site you visit you pay a small fee.
• The fee is so small that it does not deter even the poorest user in Africa.
• While small, this fee puts the entities that engage in DDoS attacks out of business – freeing up about one third of the current bandwidth.
M2M will disrupt ...

Google and Facebook account for 85% of online advertising

Models like Google AdWords are **not** sustainable in the M2M world

- Google has $90b in advertising revenue in 2016.

Micropayments will disrupt:

- Cellular service, audio/video/ pay-for-view, computing, storage, share economy, etc.

Campbell R. Harvey 2017

https://searchenginewatch.com/2016/05/31/the-most-expensive-100-google-adwords-keywords-in-the-us/
Blockchain applications

Voting

• Each citizen registered to vote is issued a voting token.
• The token cannot be sold and it can be used only once.
• It expires after the election.
• Voter needs to provide proof of identity (thumb print) to vote.
• Blockchain is checked to see if that voter has the token to “spend”.
• Your vote can be anonymous even though you provide proof of identity with “zero knowledge proof”.

https://crypto.stanford.edu/pbc/notes/crypto/voting.html
Blockchain applications

Internet of Things

- Only you can control your thermostat
- Provide proof of identity (blockchain is checked) and IoT device works for you
- Strong protection against hacking because the hacker would have to rewrite the entire blockchain and take over the majority of computing
Blockchain applications

Internet of Things

• Only you can control your car
• Provide proof of identity (blockchain is checked) and IoT device works for you
• Driverless cars are a “no go” unless they are hack proof.
Blockchain applications

Prescriptions

- Widespread fraud
- Blank scripts are stolen from doctors’ offices or forged
- Some doctors abuse the system
- Token issued to patient: it cannot be resold and has an expiration
- Patient presents token to pharmacist and blockchain is checked to make sure patient owns the token (and has not already spent it)
Blockchain applications

Medical records

- You enter a health facility (not your home facility)
- You provide proof of identity verified with a blockchain
- Your “private key” unlocks encrypted data related only your health records
- Also provides a much stronger privacy protection
 - Instead of a medical database being encrypted with one key (which might be lost or discovered), each patient’s record has its own key. Hence, to compromise the database you would need to guess potentially millions of keys
Blockchain applications

Real time financial statements

• New role for Deloitte, E&Y, PwC, etc. in validating company ledger transactions in real time
• API would allow selected transparency (same categories as in the usual financial statements) in real time
• The end of quarterly reporting – and potentially some of the incentives that are created to engage in short-termism
Blockchain applications

Fedcoin

• 78% of the value of US currency is in $100 bills
• Large denomination bills method of choice for criminal activity
Blockchain applications

Fedcoin

- 78% of the value of US currency is in $100 bills
- Large denomination bills method of choice for criminal activity
- Fedcoin is a digital USD currency where the complete history of all transactions is visible to the Fed via a Fed blockchain
- Instant monetary policy, see Rogoff (2016)

https://www.federalreserve.gov/paymentsystems/coin_currcircvalue.htm
Blockchain applications

Central banks

Central banks beat Bitcoin at own game with rival supercurrency
Conclusions

Blockchain will first disrupt financial services

- Still early going but change will happen quickly
- Low hanging fruit in financial applications
- Next applications based on other types of property like real estate, digital media,...
- Blockchain may be crucial to IoT applications that are at risk from hacking In the short-term, I see the growth of a diverse set of blockchain types
- Bitcoin blockchain is the strongest – but many applications do not require censorship resistance; sidechains offer interesting opportunities
- Alternative blockchains such as the one proposed by Ethereum allow for simple contracts to be embedded in the blockchain and offer great promise
- Blockchain not going away
Blockchain applications

2017 Duke’s Innovation and Cryptoventures course:

- Smart guns
- Entertainment and sports ticketing
- Government benefit programs
- Humanitarian aid
- Identity
- Single password for all accounts
- Educational and test score records
- Agricultural supply chain in India
- Aircraft leasing
- Digital twins for large medical devices like CT and MRI
More information

Innovation and Cryptoventures syllabus (includes links to background articles and videos)
https://faculty.fuqua.duke.edu/~charvey/Teaching/898_2017/syl898.htm

Innovation and Cryptoventures links to course materials
https://faculty.fuqua.duke.edu/~charvey/Teaching/898_2017/syl898_Topics.htm

Duke Blockchain Lab
https://DukeBlockchainLab.com
Appendix: Zero Knowledge Proof

How is a voting blockchain feasible if the government can see how everyone votes?

• The answer is a zero knowledge proof
• This means that you provide cryptographic proof that you are a valid owner of a voting token – yet you do not have to reveal who you are.
Appendix: Zero Knowledge Proof

• Imagine your friend is color-blind.

• You have two billiard balls; one is red, one is yellow, but they are otherwise identical.

• To your friend, they seem completely identical, and he is skeptical that they are actually different. You want to prove to him that they are differently colored. On the other hand, you do not want him to learn which is red and which is yellow.
Appendix: Zero Knowledge Proof

Proof system:

• You give the two balls to your friend so that he is holding one in each hand.

• You can see the balls at this point, but you don't tell him which is which.

• Your friend then puts both hands behind his back. Next, he either switches the balls between his hands, or leaves them as they are.

• Finally, he brings them out from behind his back. You now have to "guess" whether or not he switched the balls.
Appendix: Zero Knowledge Proof

Proof system:

• By looking at their colors, you can with certainty whether or not he switched them. If they were the same color and hence indistinguishable, there is no way you could guess correctly with probability higher than 1/2.

• If you and your friend repeat this "proof" T times (for large T), your friend should become convinced that the balls are indeed differently colored; otherwise, the probability that you would have succeeded at identifying all the switch/non-switches is at most $(1/2)^T$.

• Furthermore, the proof is "zero-knowledge" because your friend never learns which ball is yellow and which is red; indeed, he gains no knowledge about how to distinguish the balls.
Appendix: Permissioned blockchains

Private blockchains advantages
- No need for cryptocurrency to pay miners
- Less (or no) mining necessary and lower power consumption
- Common accounting system benefit for banks
- Clear governance
- No limit on the number of transactions (currently the bitcoin blockchain can only handle 7 transactions a second – and scalability is an issue)
- Faster blocks (could be every few seconds not 10 minutes)
- Specialized ledgers (multiple blockchains) for other types of contracts
- Blockchain greatly eases the job of the regulator who has the ability to see all transactions – and the identities of the transactors
Appendix: Permissioned blockchains

Private blockchains disadvantages

- Are they as secure as bitcoin blockchain? Potential issues with banks holding private keys and verifying their own transactions.
- Centralized rather than decentralized (you need to rely on the banks and banks will do what is in their best interests)
- Reliant on central bank currencies (which is not a big deal in the U.S., but is in many other countries)
- Blockchain vs. database debate: All blockchains are distributed ledgers but not all distributed ledgers are blockchains.
Appendix: Sidechains

Can the different types of chains be connected?

- Yes.
- A sidechain is a “blockchain that validates data from other blockchains”
- It is possible to run a permissioned sidechain that is “pegged” to the bitcoin blockchain. This is the idea of Blockstream’s Liquid.*